3.6. Волны в коаксиальном кабеле
Распространение волн в коаксиальном кабеле удобно изучать в цилиндрической системе координат.
Рассмотрим особенности распространения волн в коаксиальном кабеле.
1. В коаксиальном волноводе (кабеле) могут распространяться волны типа Т, Еmn и Нmn.
2. Для волны Т критическая длина волны кр = ; для первого высшего типа волны Н11 – , гдеR1 и R2 – радиусы внутреннего и внешнего проводников кабеля. Отсюда следует, что основным типом волны в коаксиальном кабеле является волна Т.
3. Векторы иволныТ в цилиндрической системе координат определяются следующими формулами:
(3.16)
(3.17)
где Е0 – амплитуда напряженности поля на поверхности внутреннего проводника, которая определяется мощностью источников, возбудивших волну; ;;а, а – диэлектрическая и магнитная проницаемости диэлектрика, заполняющего пространство между внутренним и внешним проводниками кабеля.
На рис. 3.14 показаны структуры полей волн Т, H11 и Е01 в поперечном сечении кабеля
Рисунок 3.14 – Структуры поля волн Т, Н11 и Е01
Из формул (3.16) и (3.17) видно, что вектор волныТ направлен радиально, а вектор – по касательной к окружности с центром на оси кабеля.
3. Подставим значение кр= в соотношения (3.5), (3.6) и (3.7), тогда получаем, что для основного типа волны коаксиального кабеля в = ; vф = vгр = = v0. Отсюда следует, что все параметры волны типа Т в коаксиальном кабеле (как и в любой другой НС с волной Т) не зависят от частоты и совпадают с параметрами плоской поперечной волны в однородной среде. Отличие волны Т, в данном случае от волны Т в свободном пространстве, заключается в том, что волна Т в НС всегда является неоднородной волной. Это следует из того, что амплитуды векторов электромагнитного поля волны Т убывают как при удалении от оси кабеля (см. формулы (3.16) и (3.17)).
4. Для волны типа Т можно ввести понятие волн напряжения и тока по следующим формулам:
.
5. Величина, которая равна отношению амплитуды напряжения к амплитуде тока в бегущей волне, называется волновым сопротивлением Zв коаксиального кабеля. Она равна для кабеля:
. (3.18)
Волновое сопротивление является важным радиотехническим параметром кабеля, так как оно определяет величину сопротивления нагрузки, которую надо подключить на конце кабеля.
6. Коэффициенты затухания волны Т в проводнике и диэлектрике кабеля определяются по следующим формулам:
, .
7. Условие одноволнового режима для коаксиального волновода имеет вид:
.
- 157 Техническая электродинамика
- Введение
- Раздел 1 теоретические основы электродинамики
- 1.1. Источники электромагнитного поля
- 1.2. Векторы электромагнитного поля
- 1.3. Материальные уравнения. Классификация сред
- 1.4. Уравнения Максвелла в дифференциальной и интегральной
- 1.5. Граничные условия для векторов электромагнитного поля
- 1.6. Метод комплексных амплитуд
- 1.7. Уравнения Максвелла для комплексных векторов
- 1.8. Комплексная диэлектрическая и магнитная
- 1.9. Энергия электромагнитного поля
- Раздел 2 распространение электромагнитных волн в свободном пространстве
- 2.1. Решение уравнений Максвелла для комплексных амплитуд
- 2.2. Плоские электромагнитные волны в среде без потерь
- 2.3. Плоские электромагнитные волны в среде с тепловыми потерями
- 2.4. Поляризация электромагнитных волн
- 2.5. Распространение волн в анизотропных средах
- Раздел 3 электромагнитные волны в направляющих системах
- 3.1. Типы направляющих систем
- 3.2. Классификация направляемых волн
- 3.3. Особенности распространения волн в направляющих системах
- 3.4. Волны в прямоугольном волноводе
- 3.5. Волны в круглом волноводе
- 3.6. Волны в коаксиальном кабеле
- 3.7. Волны в двухпроводной и полосковой линиях
- 3.8. Диэлектрический волновод. Световод
- 3.9 Направляющие системы с медленными волнами
- 3.10. Затухание волн в направляющих системах
- Раздел 4 излучение электромагнитных волн
- 4.1. Понятие элементарного электрического излучателя
- 4.2. Поле элементарного электрического излучателя в дальней зоне
- 4.3. Мощность и сопротивление излучения элементарного электрического излучателя
- 4.4. Диаграмма направленности элементарного электрического излучателя
- 4.5. Перестановочная двойственность уравнений Максвелла
- 4.6. Элементарный магнитный излучатель и его поле излучения
- 4.7. Принцип эквивалентности. Принцип Гюйгенса
- 4.8. Принцип взаимности
- 4.9. Параметры антенн
- 4.10. Симметричный электрический вибратор
- 4.11. Директорные антенны
- 4.12. Зеркальные антенны
- Раздел 5 распространение электромагнитных волн
- 5.1. Законы Снеллиуса. Коэффициенты Френеля
- 5.2. Явление полного прохождения волны через границу двух сред
- 5.3. Явление полного отражения от плоской границы раздела
- 5.4. Структура электромагнитного поля при полном
- 5.5. Поле вблизи поверхности хорошего проводника. Приближенные
- 5.6. Дифракция электромагнитных волн
- 5.7. Параметры Земли. Учет рельефа земной поверхности
- 5.8. Параметры тропосферы. Влияние тропосферы на распространение радиоволн. Тропосферная рефракция
- 5.9. Строение ионосферы. Понятие критической и максимально
- 5.10. Классификация радиоволн по способам распространения
- 5.11. Классификация радиоволн по диапазонам
- 5.12. Расчет действующего значения напряженности поля. Понятие
- 5.13. Особенности распространения радиоволн различных диапазонов
- Литература
- Приложение а вывод уравнений максвелла в дифференциальной форме
- Приложение в вывод граничных условий для векторов электромагнитного поля
- Приложение с волноводные устройства
- Режимы работы линий передачи конечной длины. Согласование линии с нагрузкой
- Приложение е математический аппарат электродинамики