Обработка результатов прямых измерений.
По способу получения результата различают прямые, косвенные и совместные измерения. Прямыми называют измерения, при которых искомое значение величины находят непосредственно из опытных данных (например, измерение тока амперметром). Косвенными называют измерения, при которых искомое значение величины Y находят на основании известной зависимости между этой величиной и величинами Х1, Х2, …, Хn, подвергаемыми прямым измерениям (например, измерение мощности путем прямого измерения тока и напряжения с последующим вычислением P=UI). Совместными называются производимые одновременно измерения двух или нескольких величин для нахождения зависимости между ними.
О бработка результатов прямых измерений кроме определения величин и ∆1, 2 ставит своей целью также выявление конкретного вида закона распределения вероятности появления случайной погрешности р(∆). Для этого производят многократные независимые измерения одной и той же величины х, получая ряд значений хi , i= . Этому ряду соответствует ряд погрешностей ∆i=xi- , i= .
З атем строится гистограмма (рис. 1.5) – ступенчатая кривая, соответствующая экспериментальной зависимости р(∆). Для её построения весь диапазон значений ∆i от ∆min до ∆max делят на одинаковые интервалы, число которых находят по правилу Старджесса
N = 1+3,3 lg n
Т огда ширина каждого интервала определится в соответствии с выражением
После этого находят число значений mj случайной погрешности ∆, приходящееся на каждый j-ый интервал. Тогда частоту
(статистическую вероятность) попадания ∆ в j-ый интервал можно вычислить как
Рj* =mj/n .
По оси абсцисс откладывают непосредственно значения ∆. Над каждым конечным отрезком оси абсцисс, соответствующим j-му интервалу, строится прямоугольник, площадь которого с учетом масштабов по осям равна величине Рj*. Для этого необходимо, чтобы высота каждого j-го прямоугольника равнялась Рj*/α . В результате общая площадь гистограммы численно равна единице.
С помощью гистограммы строят так называемый практический закон распределения вероятности р* (∆), называемый полигоном, для чего последовательно соединяют отрезками прямых середины верхних сторон всех прямоугольников гистограммы.
Искомый теоретический закон распределения может быть найден в результате подбора некоторой аналитической функции, соответствующей внешнему виду гистограммы или полигона, с тем, чтобы графики теоретического и практического законов максимально точно совпадали бы во всем диапазоне изменения ∆.
В ыбранная функция р(∆a,b,c,…), где а,b,c – некоторые числовые параметры, должна удовлетворять основным свойствам законов распределения:
Д ля окончательного определения теоретического закона распределения надо найти значения a,b,c,…. В соответствии с методом моментов эти значения должны быть такими, чтобы основные числовые характеристики (моменты) теоретического закона совпадали с соответствующими статистическими характеристиками практического распределения, т.е. М[Х]= , и т.д.
Д ля оценки степени соответствия практического и теоретического законов распределения применяют критерий согласия Пирсона (“хи-квадрат”). Для этого вычисляют величину
где Рj – вероятность попадания ∆ в j-й интервал, найденная по теоретическому закону.
Для упрощения расчетов Рj находят не интегрированием, а приближенно
Pj = P(∆ср.j)d ,
где р(∆ср.j) – значение теоретического закона распределения в точке ∆ср.j =(∆j+∆j+1)/2; ∆j и ∆j+1 –границы j-го интервала.
Чем меньше χ2, тем ближе теоретический закон к практическому. В случае их полного совпадения χ2=0. Граничное значение χ2кр, разделяющее области принятия и непринятия гипотезы о том, что случайная величина ∆ распределена по найденному закону р(∆), определяют по таблице критических точек распределения “хи-квадрат” (табл. 1.2), в которой приняты следующие обозначения: α – уровень значимости, численно равный вероятности признания справедливой гипотезы неверной (ошибка 1 рода)(величину α обычно выбирают близкой к нулю), l – число степеней свободы, определяемое из выражения
l = N-r-1 ,
Где r – количество числовых параметров теоретического закона, оцененных по результатам измерений (так, для нормального закона l=N-3).
Таблица 1.2
- Введение.
- Единицы измерения.
- Классификация погрешностей измерения.
- Оценка случайных погрешностей.
- Фрагмент табулированной зависимости φ(k)
- Оценки параметров распределения случайной погрешности.
- X является оценкой матожидания м[х] измеряемой величины. При отсутствии систематических погрешностей оно принимается за истинное. Относительно X рассеиваются результаты измерений.
- Pис. 1.4. Блок-схема алгоритма обработки результатов измерений.
- Обработка результатов прямых измерений.
- Фрагмент таблицы критических точек распределения “хи-квадрат”
- Обработка результатов косвенных измерений.
- 1.9.Обработка результатов совместных измерений.
- Пособы суммирования погрешностей.
- 1.11. Классификация средств измерения.
- 1.12. Основные свойства средств измерений.
- Цифро-аналоговые преобразователи.
- Аналого-цифровые преобразователи.
- Функциональная схема;
- Уровни сигналов на выходах сс следящего ацп.
- Цифровые вольтметры.
- 2.5. Измерение частоты периодических колебаний.
- 2.6. Измерение периода электрических сигналов.
- 2.7.Измерение сдвига фаз.
- 2.8. Измерение коэффициента гармоник.
- 2.9. Измерительные генераторы сигналов.