1.6. Модель короткозамкнутого ад при частотном управлении
Асинхронный привод с частотным управлением является в настоящее время наиболее распространенным. Однако его динамика чаще всего исследуется с помощью упрощенных моделей с отклонениями в малом. Векторная модель АД позволяет получить точную структурную схему, которую затем можно исследовать современными средствами компьютерного моделирования. Рассмотрим на этом примере методику получения передаточных функций сложных объектов с помощью векторных уравнений ОЭМ.
Пусть система координат модели АД ориентирована по вектору напряжения статора. Тогда ее угловая частота вращения будет определяться частотой сети и из выражений(1.5.3) с учетом того, что , мы получим –
; | (1.6.1) |
. | (1.6.2) |
Для вычисления модуля электромагнитного момента АД m используем векторы потокосцепления статора и тока ротора, подставляя в(1.5.6) выражение для тока статора , полученное из выражения (1.2.8 а), т.е.
, | (1.6.3) |
где – коэффициент связи статора.
При указанном выборе векторов, определяющих электромагнитный момент, нужно с помощью выражений (1.2.8) исключить в уравнениях (1.6.2) и (1.6.3) векторы и. Тогда, переходя к операторным функциям, получим
; | (1.6.4) |
(1.6.5) |
где: ,– коэффициент рассеяния, а– электромагнитная постоянная времени статора.
Вычитая из уравнения (1.6.4) уравнение (1.6.5), можно понизить порядок уравнения –
(1.6.6) |
где: , а.
Разделим векторы в выражении (1.6.6) на вещественные и мнимые составляющие и выразим проекции тока ротора
(1.6.7) |
Выражения (1.6.7) позволяют построить структурную схему преобразования напряжения и частотыстатора в фазные токи ротораиобобщенного АД при известных проекциях вектора потокосцепления статора,и частоты вращения ротора. Но потокосцепление статора можно выразить через ток ротора с помощью выражения(1.6.4) –
. | (1.6.8) |
Разделяя вещественную и мнимую составляющие, получим
(1.6.9) |
Тогда, с учетом основного уравнения привода , мы получим структурную схему АД, приведенную на рис. 1.6.
Как следует из рисунка, структура АД нелинейна и имеет четыре перекрестных связи. Упростить ее для получения передаточных функций по каналам управления напряжением и частотой крайне затруднительно, но не представляет большого труда построить эту модель в системе MatLab/Simulink и получить требуемые характеристики привода при различных законах управления, связывающих какой-либо функцией U=F() входы управления частотой и напряжением статора.
- Развитие асинхронного электропривода с векторным управлением
- Векторная модель асинхронного двигателя
- 1.1. Понятие обобщенного вектора
- 1.2. Основные соотношения между токами и потокосцеплениями ад
- 1.3. Индуктивность составляющей нулевой последовательности
- 1.4. Уравнения статора и ротора в векторной форме
- 1.5. Обобщенная электрическая машина
- 1.5.1. Электромагнитный момент ад
- 1.6. Модель короткозамкнутого ад при частотном управлении
- 2. Векторное управление асинхронным двигателем
- 2.1 Общий принцип векторного управления ад
- 2.2. Модель ад, управляемого током статора, в системе координат, ориентированной по потокосцеплению ротора
- 2.3. Модель ад, управляемого напряжением статора, в системе координат, ориентированной по потокосцеплению ротора
- 2.4. Основные элементы систем векторного управления ад
- 2.4.1. Усилитель мощности релейного типа
- 2.4.2. Преобразователи числа фаз
- 2.4.3. Вектор-анализаторы и ротатор
- 2.5. Замкнутые системы векторного управления ад
- 2.5.1. Характеристики системы с п-регулятором скорости
- 2.5.2. Характеристики системы с пи-регулятором скорости
- Список литературы