1.4. Уравнения статора и ротора в векторной форме
Уравнения Кирхгофа для фазных напряжений статора АД имею вид
(1.4.1) |
При наличии нулевых составляющих к выражениям (1.4.1) следует добавить уравнение
.
Перейдем к векторной форме записи выражений (1.4.1), умножив второе уравнение на A, а третье на A2 , а затем складывая все три уравнения и умножая их правую и левую части на 2/3. В результате получим
(1.4.2) |
Аналогичные преобразования можно выполнить с системе координат x–y и для фаз ротора, получив при этом
. | (1.4.3) |
Уравнения (1.4.2) и (1.4.3) записаны в разных системах координат. Для перевода уравнения ротора в неподвижную систему координат - умножим обе его части на оператор поворота на текущий угол поворота системы координат – ej и представим в производной вектор потокосцепления ротора в новой системе как .
После преобразований, опуская индексы координатной системы, получим уравнение ротора в векторной форме в системе координат статора
, |
(1.4.4) |
где =d /dt – текущая скорость вращения ротора.
Переход к неподвижной системе координат в уравнении ротора привел к разложению слагаемого, соответствующего ЭДС индукции, на две составляющие: первая составляющая d 2/dt связана с изменением потокосцепления во времени вследствие измерения во времени токов и называется ЭДС трансформации, по аналогии с процессами ее возбуждения в соответствующей электрической машине; вторая – 2 связана с изменением потокосцепления вследствие вращения ротора и называется ЭДС вращения. Разложение ЭДС индукции на составляющие является математической операцией, связанной с преобразованием системы координат при условии инвариантности мощности и в некоторых случаях это разложение можно истолковать, исходя из физических процессов в машине.
Уравнения (1.4.2) и (1.4.4) записаны для неподвижной системы координат и их можно объединить в общую систему для решения. Кроме того, оба этих уравнения можно представить в некоторой произвольной системе координат m-n, вращающейся с произвольной угловой частотой (mn). Для этого с ними нужно проделать преобразования аналогичные выражениям (1.4.4), в результате которых мы получим уравнения:
, |
(1.4.5) |
из которых уравнения для любых других систем координат получаются подстановкой в (1.4.5) соответствующей частоты вращения (mn).
Выражения (1.4.5) показывают, что выбором системы координат можно упростить задачу, исключив ЭДС вращения, но только в одном из уравнений.
В дальнейшем мы будем использовать следующие индексы систем координат:
- – | неподвижная система координат () ориентированная по оси фазыa обмотки статора; |
x-y – | система координат, вращающаяся синхронно с ротором () и ориентированная по оси фазыa его обмотки; |
d-q – | система координат, вращающаяся синхронно с потокосцеплением ротора () и ориентированная по его направлению; |
m-n – | произвольно ориентированная система координат, вращающаяся с произвольной скоростью . |
В любой электрической машине угловая частота вращения магнитного поля статора 1 связана с угловой частотой вращения магнитного поля ротора 2 и угловой частотой вращения ротора следующим соотношением – , где положительный знак соответствует согласному направлению вращения. Но частоты вращения полей статора и ротора определяются частотами соответствующих токов и числом пар полюсов обмотокzp, т.е. и, где 1 и 2 – частоты токов статора и ротора. Отсюда
(1.4.6) |
где – угловая частота вращения ротора электрической машины с одной парой полюсов.
- Развитие асинхронного электропривода с векторным управлением
- Векторная модель асинхронного двигателя
- 1.1. Понятие обобщенного вектора
- 1.2. Основные соотношения между токами и потокосцеплениями ад
- 1.3. Индуктивность составляющей нулевой последовательности
- 1.4. Уравнения статора и ротора в векторной форме
- 1.5. Обобщенная электрическая машина
- 1.5.1. Электромагнитный момент ад
- 1.6. Модель короткозамкнутого ад при частотном управлении
- 2. Векторное управление асинхронным двигателем
- 2.1 Общий принцип векторного управления ад
- 2.2. Модель ад, управляемого током статора, в системе координат, ориентированной по потокосцеплению ротора
- 2.3. Модель ад, управляемого напряжением статора, в системе координат, ориентированной по потокосцеплению ротора
- 2.4. Основные элементы систем векторного управления ад
- 2.4.1. Усилитель мощности релейного типа
- 2.4.2. Преобразователи числа фаз
- 2.4.3. Вектор-анализаторы и ротатор
- 2.5. Замкнутые системы векторного управления ад
- 2.5.1. Характеристики системы с п-регулятором скорости
- 2.5.2. Характеристики системы с пи-регулятором скорости
- Список литературы