13. Треугольник Паскаля
Сочетаниями без повторений занимался еще великий Паскаль. Он предложил специальную таблицу значений сочетаний без повторений.
Значения представлены в табл. 6, которая называется треугольником Паскаля.
Таблица 6
Треугольник Паскаля
k n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
0 | 1 |
|
|
|
|
|
|
|
|
1 | 1 | 1 |
|
|
|
|
|
|
|
2 | 1 | 2 | 1 |
|
|
|
|
|
|
3 | 1 | 3 | 3 | 1 |
|
|
|
|
|
4 | 1 | 4 | 6 | 4 | 1 |
|
|
|
|
5 | 1 | 5 | 10 | 10 | 5 | 1 |
|
|
|
6 | 1 | 6 | 15 | 20 | 15 | 6 | 1 |
|
|
7 | 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 |
|
8 | 1 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 |
Заметим, что .
Этот треугольник удивительно красив своей математической красотой, и в его числах можно при желании отыскать различные закономерности. Его можно представить несколько иначе – в виде [26]: равнобедренного треугольника (рис. 10).
Рис. 10. Треугольник Паскаля
Здесь каждое число, кроме единиц на боковых сторонах, является суммой двух чисел, стоящих над ним. Поэтому:
(приводим к общему знаменателю)
(выносим n! за скобку в знаменателе)
Из этого соотношения и вытекает эффективный способ рекуррентного вычисления значений биномиальных коэффициентов.
Докажем соотношение 1)
Это может использоваться при вычислениях, например, вместо можно вычислить.
Докажем соотношение 2)
- 1.Основные понятия теории множеств.
- 2.Операции над множествами.
- 3.Соответствия, отображения и функции.
- 4. Отношения на множествах
- 5. Операции на множествах, понятие алгебры
- 6. Алгебра Кантора. Законы алгебры Кантора
- 7. Алгебраические системы. Решетка Хассэ
- 8.Задание множеств конституентами (числом)
- 9. Основные понятия комбинаторики
- 10. Размещения
- 11. Перестановки
- 12. Сочетания
- 13. Треугольник Паскаля
- 14. Бином Ньютона
- 15. Задание графов
- 16. Свойства графов
- 17. Понятие о задачах на графа
- 18. Понятие о переключательных функциях
- 19. Двоичные переключательные функции и способы их задания
- 20. Основные логические операции
- 21. Элементарные переключательные функции
- 22. Определение свойств переключательных функций
- 23. Функциональная полнота систем переключательных функций. Теорема Поста о функциональной полноте систем пф
- 24. Переключательные схемы - техническая реализация пф
- 25. Основные законы булевой алгебры пф
- 26.27. Формы представления переключательных функций. Сднф. Скнф
- 28. Цели минимизации пф
- 29. Основные понятия минимизации пф
- 30. Метод Квайна-Мак-Класки
- 31.32. Задание пф картой Карно. Карта Карно на три и четыре переменных
- 33. Минимизация на кубе соседних чисел
- 35. Основные определения теории автоматов
- 36. Описание конечных автоматов таблицами переходов-выходов и графами
- 37. Техническая интерпретация конечного автомата
- 38. Синтез комбинационных автоматов в заданном базисе
- 39. Элементарные автоматы памяти
- 40. Системы счисления - основа различных кодов
- 41. Представление информации в эвм