28. Цели минимизации пф
При технической реализации переключательных функций, широко используемых в вычислительной технике, системах автоматического (автоматизированного) управления и контроля, возникает задача нахождения наиболее экономичного представления соответствующих переключательных функций. По существу решается задача оптимизации, причем минимизируется стоимость реализации. Понятие стоимости устройства, реализующего переключательную функцию – дискретного устройства – относительно. Для переключательных схем, реализуемых в виде релейно-контактных схем, для схем из корпусных транзисторов и резисторов, из микросхем логических элементов малой степени интеграции, минимизация числа реле, контактов, транзисторов, числа микросхем и означает снижение стоимости [28]. Это было особенно актуально на ранних этапах развития дискретной, цифровой техники. Для современных цифровых автоматов на больших и сверхбольших интегральных схемах (БИС и СБИС) стоимость определяется площадью схемы на кристалле кремния и непосредственно не связана с числом микротранзисторов и других элементов. Нередко схема с большим числом элементов, но обладающая высокой регулярностью, занимает небольшую площадь, кроме того, она выгодна с точки зрения проектирования, ведь стоимость проектирования, как и стоимость изготовления, входит в суммарную стоимость устройства [28].
При построении устройства из дискретных компонентов в целях повышения надежности наряду с уменьшением их числа (что увеличивает вероятность безотказной работы) большое значение придается уменьшению числа соединений между компонентами (это также увеличивает вероятность безотказной работы). Кстати, эта задача решается на соответствующем графе – он разбивается на подграфы, минимально связанные между собой. Однако, для БИС надежность соединений внутри кристалла достаточно высока по сравнению с надежностью соединений между кристаллами. В связи с этим большое значение приобретает деление системы на БИС таким образом, чтобы уменьшить число точек соединений между ними.
Ограничимся в дальнейшем целью нахождения наиболее простого представления переключательной функции в смысле наименьшего числа входящих в нее символов (букв). Процесс получения такого представления будем называть минимизацией. Под различными символами (буквами) будем понимать вхождения одной и той же переменной в различные дизъюнктивные (конъюнктивные) члены функции. Так, функция z1(аbс)=аb aс bс содержит шесть букв, а функция z2(аbс)=аb aс – четыре буквы, хотя обе функции зависят от трех переменных а,b,с (закон обобщенного склеивания z1=z2).
Методы минимизации разрабатываются применительно к каждой отдельной функциональной полной системе элементных переключательных функций. Наиболее детально такие методы разработаны для систем из дизъюнкции, конъюнкции и инверсии.
При этом задача минимизации переключательной функции сводится к нахождению такой ее формы, которая содержит наименьшее число дизъюнкций, конъюнкций и инверсий.
Нахождение минимального представления функции в виде ДНФ или КНФ связано с решением двух основных задач [17]. Во-первых, это определение конъюнкций (дизъюнкций) входящих в ДНФ (КНФ), каждая из которых содержит минимальное число букв. Во-вторых, это определение ДНФ (КНФ), содержащей минимальное число различных элементарных конъюнкций (дизъюнкций).
Будем рассматривать в основном минимизацию переключательных функций в классе ДНФ, не требуя минимизации числа инверсий.
- 1.Основные понятия теории множеств.
- 2.Операции над множествами.
- 3.Соответствия, отображения и функции.
- 4. Отношения на множествах
- 5. Операции на множествах, понятие алгебры
- 6. Алгебра Кантора. Законы алгебры Кантора
- 7. Алгебраические системы. Решетка Хассэ
- 8.Задание множеств конституентами (числом)
- 9. Основные понятия комбинаторики
- 10. Размещения
- 11. Перестановки
- 12. Сочетания
- 13. Треугольник Паскаля
- 14. Бином Ньютона
- 15. Задание графов
- 16. Свойства графов
- 17. Понятие о задачах на графа
- 18. Понятие о переключательных функциях
- 19. Двоичные переключательные функции и способы их задания
- 20. Основные логические операции
- 21. Элементарные переключательные функции
- 22. Определение свойств переключательных функций
- 23. Функциональная полнота систем переключательных функций. Теорема Поста о функциональной полноте систем пф
- 24. Переключательные схемы - техническая реализация пф
- 25. Основные законы булевой алгебры пф
- 26.27. Формы представления переключательных функций. Сднф. Скнф
- 28. Цели минимизации пф
- 29. Основные понятия минимизации пф
- 30. Метод Квайна-Мак-Класки
- 31.32. Задание пф картой Карно. Карта Карно на три и четыре переменных
- 33. Минимизация на кубе соседних чисел
- 35. Основные определения теории автоматов
- 36. Описание конечных автоматов таблицами переходов-выходов и графами
- 37. Техническая интерпретация конечного автомата
- 38. Синтез комбинационных автоматов в заданном базисе
- 39. Элементарные автоматы памяти
- 40. Системы счисления - основа различных кодов
- 41. Представление информации в эвм