25. Основные законы булевой алгебры пф
Формулы ПФ f1 и f2 равносильны, если их эквиваленция f1f2 является тождественно истинной (тавтологией). Равносильность, как правило, обозначается , но мы будем «нестрого» использовать в дальнейшем и простое равенство =.
Равносильность – это некоторое отношение, которое обладает следующими свойствами:
а) оно рефлексивно, т.е. ff, всякая формула f равносильна самой себе;
б) оно симметрично: если f1f2, то f2f1;
в) оно транзитивно: если f1f2 и f2f3, то f1f3.
Равносильности формул алгебры логики часто называют законами. Они подобны законам алгебры множеств. Говорят, что булева алгебра логических (переключательных) функций изоморфна булевой алгебре множеств.
Законы булевой алгебры:
1) хх – закон тождества. Закон тождества означает, что мысль, заключенная в некотором высказывании, соответствующем двоичной переключательной функции остается (считается) неизменной на протяжении всего рассуждения.
2) – закон противоречия. Закон противоречия гласит, что никакое предложение не может быть истинным одновременно со своим отрицанием.
3) – закон исключенного третьего. Закон исключенного третьего говорит о том, что для каждого высказывания имеется лишь две возможности: быть либо истинным, либо ложным. Третьего не дано.
4) – закон двойного отрицания.
5) ххх; ххх – закон идемпотентности (от латинского idem – то же, potentio – сила). Этот закон рассматривается относительно операций конъюнкции и дизъюнкции. В силу закона идемпотентности в алгебре логики, как и в алгебре множеств, нет показателей степеней, коэффициентов. Оказывается, основные законы алгебры логики двойственны (справедливы относительно конъюнкции и дизъюнкции).
6) хyyх; xyyх – закон коммутативности (переместительности).
7) х(yz)(xy)z; x(yz)(xy)z – закон ассоциативности (сочетательности).
8) х(yz)xyхz; xyz)(xy)(хz) – закон дистрибутивности (распределительности). Закон дистрибутивности относительно дизъюнкции не имеет аналога в обычной алгебре.
9) ;закон Де Моргана. Отрицание конъюнкции высказываний равносильно дизъюнкции отрицаний этих высказываний. Отрицание дизъюнкции высказываний равносильно конъюнкции отрицаний этих высказываний.
10) xхyх; х(xy)х – закон поглощения. Короткий член конъюнкции (дизъюнкции) поглощает длинный член, содержащий короткий в качестве составной части.
11) – закон склеивания. Здесь склеивание производится по переменнойy; она исключается, если входит в члены дизъюнкции (конъюнкции) с разными знаками, а остальные элементы в конъюнкции (дизъюнкции) с ней одинаковы.
12) – закон обобщенного склеивания, т.е. в дизъюнкции конъюнкций «лишней» является конъюнкция, полученная в результате конъюнкции членов перед инверсной и неинверсной переменной в двух других конъюнкциях. То же можно сказать и о конъюнкции дизъюнкций, в которых имеются дизъюнкции с такими переменными.
Еще раз отметим двойственность законов алгебры логики: они действуют как относительно дизъюнкции, так и относительно конъюнкции.
Кроме перечисленных законов, которые можно доказать, например, построив соответствующие таблицы истинности (соответствия), большое значение имеют так называемые соотношения 0 и 1, полученные на основании законов алгебры логики:
причем два последних соотношения – это закон исключенного третьего и закон противоречия. Так, например:
10=1; 10=0;
01=1; 01=0.
Здесь мы стали применять простое равенство (=).
Рассмотренные законы применимы не только к отдельным переменным, но и к группам переменных, объединенных операциями алгебры логики, т.е. х, например, может быть в свою очередь конъюнкцией а.
В алгебре переключательных функций установлен порядок выполнения действий. При отсутствии в выражении скобок первыми выполняются операции отрицания (инверсии), затем операции конъюнкции и последними – дизъюнкции.
При наличии в выражении скобок в первую очередь выполняются операции внутри скобок.
- 1.Основные понятия теории множеств.
- 2.Операции над множествами.
- 3.Соответствия, отображения и функции.
- 4. Отношения на множествах
- 5. Операции на множествах, понятие алгебры
- 6. Алгебра Кантора. Законы алгебры Кантора
- 7. Алгебраические системы. Решетка Хассэ
- 8.Задание множеств конституентами (числом)
- 9. Основные понятия комбинаторики
- 10. Размещения
- 11. Перестановки
- 12. Сочетания
- 13. Треугольник Паскаля
- 14. Бином Ньютона
- 15. Задание графов
- 16. Свойства графов
- 17. Понятие о задачах на графа
- 18. Понятие о переключательных функциях
- 19. Двоичные переключательные функции и способы их задания
- 20. Основные логические операции
- 21. Элементарные переключательные функции
- 22. Определение свойств переключательных функций
- 23. Функциональная полнота систем переключательных функций. Теорема Поста о функциональной полноте систем пф
- 24. Переключательные схемы - техническая реализация пф
- 25. Основные законы булевой алгебры пф
- 26.27. Формы представления переключательных функций. Сднф. Скнф
- 28. Цели минимизации пф
- 29. Основные понятия минимизации пф
- 30. Метод Квайна-Мак-Класки
- 31.32. Задание пф картой Карно. Карта Карно на три и четыре переменных
- 33. Минимизация на кубе соседних чисел
- 35. Основные определения теории автоматов
- 36. Описание конечных автоматов таблицами переходов-выходов и графами
- 37. Техническая интерпретация конечного автомата
- 38. Синтез комбинационных автоматов в заданном базисе
- 39. Элементарные автоматы памяти
- 40. Системы счисления - основа различных кодов
- 41. Представление информации в эвм