10. Размещения
Упорядоченная (n,k) выборка, в которой элементы могут повторяться, называется (n,k) размещением с повторениями.
Иными словами размещениями с повторениями из n элементов по k называют векторы длины k, составленные из n элементов множества Х.
Число размещений с повторениями из n элементов по k определяется оценкой соответствующего декартова произведения Хk n-элементного множества, обозначается (по-видимому от английского словаAssing – назначать) и вычисляется следующим образом:
=nk.
Таким образом, первый элемент вектора длины k выбирается n способами, второй – n способами и т.д.: nn...n=nk.
Пример. Сколькими способами можно оснастить две различные фирмы компьютерами трех типов?
Каждый способ оснащения есть выборка (3,2), вектор длины 2, составленный из 3-х элементного множества типов Т={t1,t2,t3}. Поэтому число способов оснащения – число размещений с повторениями из 3 по 2:
.
Рассмотрим подробнее:
1) (t1,t1); 2) (t1,t2); 3) (t1,t3);
4) (t2,t2); 5) (t2,t3); 6) (t2,t1);
7) (t3,t3); 8) (t3,t2); 9) (t3,t1).
Получили различные упорядочения двухэлементных векторов из 3-х элементного множества, т.е. множество Т2.
Здесь каждый вектор соответствует способу оснащения. Видно, что, например, (t1,t2), (t2,t1) считаются разными способами, так как фирмы предполагаются различными («первая – первым типом», «вторая – вторым» и т.д.). Имеются повторения: (t1,t1), (t2,t2), (t3,t3).
В ряде задач необходимо определить число векторов длины k из n элементов данного множества без повторения элементов.
Если элементы упорядоченной (n,k) выборки попарно различны, то они называются (n,k) размещением без повторений или просто (n,k) размещением.
Число таких размещений без повторений обозначается .
Каждое (n,k) размещение без повторения является упорядоченной последовательностью длины k, элементы которой попарно различны и выбираются из множества с n элементами. Тогда первый элемент этой последовательности может быть выбран n способами, после каждого выбора первого элемента последовательности второй элемент может быть выбран n-1 способами и т.д., k-й элемент выбирается n-(k-1) способом:
=(n-1)(n-2)...[n-(k-1)].
Преобразуем эту формулу, умножая и деля ее на произведение чисел 12(n-k):
В частности, при k=0 . Очевидно, что приk>n =0.
Пример. Сколькими способами из 3-х студентов можно назначить группу на прополку клубники в составе начальника и подчиненного?
Речь идет о выборе упорядоченных двухэлементных подмножеств множества студентов, состоящего из трех элементов (K={1,2,3}), т.е. о размещениях без повторений из 3 элементов по 2, поэтому:
.
Подробнее, в виде векторов из номеров студентов, например, по журнальному списку, первая компонента которого обозначает номер студента-начальника, вторая – подчиненного:
(1,2), (1,3), (2,1), (2,3), (3,1), (3,2).
Ясно, что здесь существенен порядок следования компонент и не может быть повторений (один студент не может быть начальником и подчиненным одновременно), поэтому это множество – подмножество декартового произведения.
Пример. Сколькими способами можно провести распределение 10 механизаторов по 3 сушильным установкам? Один механизатор назначается на одну сушильную установку.
Распределение механизаторов – размещение без повторений из 10 элементов по 3, поэтому:
.
- 1.Основные понятия теории множеств.
- 2.Операции над множествами.
- 3.Соответствия, отображения и функции.
- 4. Отношения на множествах
- 5. Операции на множествах, понятие алгебры
- 6. Алгебра Кантора. Законы алгебры Кантора
- 7. Алгебраические системы. Решетка Хассэ
- 8.Задание множеств конституентами (числом)
- 9. Основные понятия комбинаторики
- 10. Размещения
- 11. Перестановки
- 12. Сочетания
- 13. Треугольник Паскаля
- 14. Бином Ньютона
- 15. Задание графов
- 16. Свойства графов
- 17. Понятие о задачах на графа
- 18. Понятие о переключательных функциях
- 19. Двоичные переключательные функции и способы их задания
- 20. Основные логические операции
- 21. Элементарные переключательные функции
- 22. Определение свойств переключательных функций
- 23. Функциональная полнота систем переключательных функций. Теорема Поста о функциональной полноте систем пф
- 24. Переключательные схемы - техническая реализация пф
- 25. Основные законы булевой алгебры пф
- 26.27. Формы представления переключательных функций. Сднф. Скнф
- 28. Цели минимизации пф
- 29. Основные понятия минимизации пф
- 30. Метод Квайна-Мак-Класки
- 31.32. Задание пф картой Карно. Карта Карно на три и четыре переменных
- 33. Минимизация на кубе соседних чисел
- 35. Основные определения теории автоматов
- 36. Описание конечных автоматов таблицами переходов-выходов и графами
- 37. Техническая интерпретация конечного автомата
- 38. Синтез комбинационных автоматов в заданном базисе
- 39. Элементарные автоматы памяти
- 40. Системы счисления - основа различных кодов
- 41. Представление информации в эвм