1.Основные понятия теории множеств.
Понятия «множество», «элемент множества» являются одними из основных, исходных понятий математики. Принято считать, что эти понятия, как и любые другие исходные понятия некоторой математической теории не определяются [24]. Действительно, всякое определение содержит другие понятия, логически предшествующие определяемому, поэтому, по крайней мере, первое определение теории должно содержать не определяемые понятия. В качестве исходных обычно выбираются понятия, в понимании которых не возникает существенных разногласий (возможные разногласия не нарушают правильности ни одного положения теории). Вообще в дискретной математике имеются специальные принципы построения математических теорий.
Под множеством понимают любое собрание определенных и различимых между собой объектов, мыслимых как единое целое. В этом нестрогом, интуитивном определении, принадлежащем одному из родоначальников современной теории множеств – немецкому математику Г. Кантору (1845-1918 гг.) существенным является то обстоятельство, что собрание различных объектов рассматривается как один объект [24]. Нам будет вполне достаточно интуитивного понимания понятий «множество», «быть элементом множества». Объекты, образующие множество, называют элементами множества и обозначают, как правило, строчными, а множества – прописными буквами латинского алфавита.
Для обозначения принадлежности элемента m множеству М будем использовать запись mМ, где знак является стилизацией первой буквы греческого слова i (есть, быть) [9-10].
Множество, содержащее конечное число элементов, называют конечным. В теории множеств используется и такое необычное множество, как пустое множество, не содержащее ни одного элемента и обозначаемое символом . Число элементов конечного множества М называют мощностью и обозначают |М|. Мощность бесконечного множества – более сложное понятие.
Каждое множество полностью задается своими элементами. Для этого можно перечислить элементы конечного множества или указать свойства элементов. Обычно для задания множеств используются фигурные скобки {}. Например:
А={a,b,c,d}
B={i:i – четное число}.
А – конечное множество, состоящее из четырех элементов a,b,c,d. В – бесконечное множество, заданное свойством элементов i, которое записывается справа от двоеточия. По существу это свойство задается так называемым одноместным предикатом Р(i) («быть четным числом»), о которых речь пойдет в дальнейшем. Множество может быть задано также некоторой порождающей процедурой. Весьма распространенной порождающей процедурой является образование множеств из других множеств с помощью операций над множествами.
В множестве могут быть выделены подмножества. Если каждый элемент множества С принадлежит множеству D, то множество С называется подмножеством множества D. Это обозначается как СD (DС), где – знак включения (вспомним знак принадлежности ). Говорят, что множества С и D находятся в отношении включения, а элементы множества к самому множеству – в отношении принадлежности.
Если АВ и АВ, то А называют собственным, строгим или истинным подмножеством и обозначают АВ, где – знак строгого включения.
Для каждого множества М существует множество, элементами которого являются все его подмножества. Такое множество называется булеаном множества и обозначается В(М), а множество М – универсумом (универсальным) и обозначается I [9-10].
Пусть I={a,b}, тогда B(I)={,{a},{b},{а,b}}. Для I={a,b,с}, B(I)={,{a},{b},{c},{а,b},{a,c},{b,c},{a,b,с}}.
Множества часто задают графически с помощью диаграмм Эйлера (рис. 1).
Рис. 1. Пример диаграммы Эйлера для множеств
{{а,b,с},{b,d,e}} в универсуме {а,b,с,d,e}
На рис. 1 заданы множества {{а,b,с},{b,d,e}} в универсуме I={а,b,с,d,e}, замкнутая линия, называемая кругом Эйлера, соответствует одному из рассматриваемых множеств и ограничивает его элементы, при этом рамка, в верхнем правом углу которой обозначено I, ограничивает элементы универсума (универсального множества).
- 1.Основные понятия теории множеств.
- 2.Операции над множествами.
- 3.Соответствия, отображения и функции.
- 4. Отношения на множествах
- 5. Операции на множествах, понятие алгебры
- 6. Алгебра Кантора. Законы алгебры Кантора
- 7. Алгебраические системы. Решетка Хассэ
- 8.Задание множеств конституентами (числом)
- 9. Основные понятия комбинаторики
- 10. Размещения
- 11. Перестановки
- 12. Сочетания
- 13. Треугольник Паскаля
- 14. Бином Ньютона
- 15. Задание графов
- 16. Свойства графов
- 17. Понятие о задачах на графа
- 18. Понятие о переключательных функциях
- 19. Двоичные переключательные функции и способы их задания
- 20. Основные логические операции
- 21. Элементарные переключательные функции
- 22. Определение свойств переключательных функций
- 23. Функциональная полнота систем переключательных функций. Теорема Поста о функциональной полноте систем пф
- 24. Переключательные схемы - техническая реализация пф
- 25. Основные законы булевой алгебры пф
- 26.27. Формы представления переключательных функций. Сднф. Скнф
- 28. Цели минимизации пф
- 29. Основные понятия минимизации пф
- 30. Метод Квайна-Мак-Класки
- 31.32. Задание пф картой Карно. Карта Карно на три и четыре переменных
- 33. Минимизация на кубе соседних чисел
- 35. Основные определения теории автоматов
- 36. Описание конечных автоматов таблицами переходов-выходов и графами
- 37. Техническая интерпретация конечного автомата
- 38. Синтез комбинационных автоматов в заданном базисе
- 39. Элементарные автоматы памяти
- 40. Системы счисления - основа различных кодов
- 41. Представление информации в эвм