12. Сочетания
В ряде комбинаторных задач требуется определить число k-элементных подмножеств множества из n элементов. В этом случае порядок следования компонентов несущественен, т.е. производится неупорядоченная выборка.
В результате получают так называемые сочетания без повторения.
Сочетаниями без повторений из n элементов по k называются отличающиеся друг от друга хотя бы одним элементом выборки длины k, составленные из n элементного множества.
Число сочетаний без повторений из n элементов по k, обозначаемое как определяется, исходя из числа размещений без повторений с учетом того, что различных неупорядоченных векторов (подмножеств исходного множества) будет меньше в число раз, соответствующее числу перестановок без повторений изk элементов:
.
Пример. Определить число двухэлементных подмножеств множества, состоящего из трех элементов. Перечисляем все двухэлементные подмножества множества Х={х1,х2,х3}:
{х1,х2},{х1,х3},{х2,х3}.
Здесь мы имеем дело с сочетаниями из 3-х по 2:
.
Это величина в 2! раза меньше, чем число размещений из , поскольку компоненты двухэлементных векторов можно переставить Р2=2! способами.
Пример. Сколькими способами можно выбрать 3 различных комбайна из 5 имеющихся?
Число размещений из 5 по 3 без повторений: =543=60.
Один и тот же набор комбайнов можно получить различными способами, например, векторы (а,b,с) и (b,а,с) дают один и тот же набор. Поскольку три элемента можно переставить Р3=3!=6 способами, то число способов выбора различных 3 комбайнов равно
.
В ряде комбинаторных задач требуется подсчитывать число различных составов векторов длины k из n элементного множества. Такие векторы-составы называются сочетаниями с повторениями из n элементов по k.
Например, требуется составить механизированные бригады из 3 комплексов 2 типов и определить количество таких бригад. Порядок следования комплексов в векторе бригады роли не играет, а каждая бригада задается вектором длины 3 из 2 элементов, порядок компонент которого роли не играет.
Получаем сочетания с повторениями из 2 элементов по 3:
(m1,m1,m1),(m1,m2,m2),(m1,m1,m2),(m2,m2,m2),
где m означает тип комплекса.
Итак, возможно построить бригаду из трех комплексов первого типа, трех комплексов второго типа, двух комплексов второго типа и одного первого и, наконец, двух комплексов первого типа и одного второго, т.е. четырьмя способами.
Определение числа сочетаний с повторениями можно произвести следующим образом [24].
Каждому сочетанию с повторениями из 2 по 3 ставится в однозначное соответствие вектор длины n+k-1=2+3-1=4, состоящий из 3 нулей и n-1=1 единицы:
Количество комплексов 1-го типа | Разделитель | Количество комплексов 2-го типа | Состав вектора бригады |
000 | 1 |
| (m1,m1,m1) |
0 | 1 | 00 | (m1,m2,m2) |
00 | 1 | 0 | (m1,m1,m2) |
| 1 | 000 | (m2,m2,m2) |
В таком случае число сочетаний с повторениями, которое обозначается , равно числу перестановок с повторениями данного состава (вектор имеет одну единицу и три нуля), т.е. Р(3,1)==4.
В общем случае, это выражение имеет вид
,
что соответствует выражению
.
Например, требуется составить подразделения из 6 рабочих 4 специальностей и определить количество способов формирования таких подразделений.
Получаем сочетания с повторениями из 4-х элементов по 6:
.
- 1.Основные понятия теории множеств.
- 2.Операции над множествами.
- 3.Соответствия, отображения и функции.
- 4. Отношения на множествах
- 5. Операции на множествах, понятие алгебры
- 6. Алгебра Кантора. Законы алгебры Кантора
- 7. Алгебраические системы. Решетка Хассэ
- 8.Задание множеств конституентами (числом)
- 9. Основные понятия комбинаторики
- 10. Размещения
- 11. Перестановки
- 12. Сочетания
- 13. Треугольник Паскаля
- 14. Бином Ньютона
- 15. Задание графов
- 16. Свойства графов
- 17. Понятие о задачах на графа
- 18. Понятие о переключательных функциях
- 19. Двоичные переключательные функции и способы их задания
- 20. Основные логические операции
- 21. Элементарные переключательные функции
- 22. Определение свойств переключательных функций
- 23. Функциональная полнота систем переключательных функций. Теорема Поста о функциональной полноте систем пф
- 24. Переключательные схемы - техническая реализация пф
- 25. Основные законы булевой алгебры пф
- 26.27. Формы представления переключательных функций. Сднф. Скнф
- 28. Цели минимизации пф
- 29. Основные понятия минимизации пф
- 30. Метод Квайна-Мак-Класки
- 31.32. Задание пф картой Карно. Карта Карно на три и четыре переменных
- 33. Минимизация на кубе соседних чисел
- 35. Основные определения теории автоматов
- 36. Описание конечных автоматов таблицами переходов-выходов и графами
- 37. Техническая интерпретация конечного автомата
- 38. Синтез комбинационных автоматов в заданном базисе
- 39. Элементарные автоматы памяти
- 40. Системы счисления - основа различных кодов
- 41. Представление информации в эвм