14. Бином Ньютона
Имеется формула, называемая биномом Ньютона, которая использует выражения числа сочетаний с повторениями
где а, b – действительные или комплексные числа.
Например:
Коэффициенты называются биномиальными.
Докажем формулу бинома Ньютона по индукции. Доказательство по индукции предполагает:
1) базис индукции – доказательство того, что формула верна для конкретного n, например, для n=1. В нашем случае мы убедились, что формула верна для n=2,3,4. Убедимся, что она верна и для n=1.
2) индукционный шаг. Предполагая, что формула верна для некоторого n, убеждаются, что тогда она верна и для n+1.
3) при истинности шагов 1 и 2 заключают, что формула верна для любого n.
Приступим к индукционному шагу.
Возьмем выражение и получим из него выражение для n+1. Очевидно, что это можно сделать путем умножения на a+b:
Преобразуем полученное выражение:
Для выполнения индукционного шага необходимо показать, что это выражение равно выражению:
.
Рассмотрим подвыражение выражения (1):и заменимi на i-1.
Получим , т.е. одинаковые коэффициентыперед выражениями,для числа сочетаний в первом и втором подвыражении выражения (1).Это позволит вынестиза скобку. Но тогда вне учтенn-й член подвыражения (суммирование идет доn): тогда, учитывая его, получаем:
Нетрудно видеть, что можно заменитьна, кроме того, мы уже доказали, что, поэтому: , что, очевидно, равно выражению:
.
По индукции получаем, что формула бинома Ньютона верна для любого n.
С использованием бинома Ньютона докажем следствие №1 о количестве подмножеств множества из n элементов:
Рассмотрим следствие №2: .
На использовании бинома Ньютона основано понятие производящей функции – функции, позволяющей получать комбинаторные числа без вычисления факториала:
. Здесь – функция, производящая биномиальные коэффициенты.
При n=1 получаем 1+x, т.е. (коэффициент перед 1),(коэффициент передx).
При n=2 получаем (1+x)2=1+2x+x2, т.е. и т.д.
- 1.Основные понятия теории множеств.
- 2.Операции над множествами.
- 3.Соответствия, отображения и функции.
- 4. Отношения на множествах
- 5. Операции на множествах, понятие алгебры
- 6. Алгебра Кантора. Законы алгебры Кантора
- 7. Алгебраические системы. Решетка Хассэ
- 8.Задание множеств конституентами (числом)
- 9. Основные понятия комбинаторики
- 10. Размещения
- 11. Перестановки
- 12. Сочетания
- 13. Треугольник Паскаля
- 14. Бином Ньютона
- 15. Задание графов
- 16. Свойства графов
- 17. Понятие о задачах на графа
- 18. Понятие о переключательных функциях
- 19. Двоичные переключательные функции и способы их задания
- 20. Основные логические операции
- 21. Элементарные переключательные функции
- 22. Определение свойств переключательных функций
- 23. Функциональная полнота систем переключательных функций. Теорема Поста о функциональной полноте систем пф
- 24. Переключательные схемы - техническая реализация пф
- 25. Основные законы булевой алгебры пф
- 26.27. Формы представления переключательных функций. Сднф. Скнф
- 28. Цели минимизации пф
- 29. Основные понятия минимизации пф
- 30. Метод Квайна-Мак-Класки
- 31.32. Задание пф картой Карно. Карта Карно на три и четыре переменных
- 33. Минимизация на кубе соседних чисел
- 35. Основные определения теории автоматов
- 36. Описание конечных автоматов таблицами переходов-выходов и графами
- 37. Техническая интерпретация конечного автомата
- 38. Синтез комбинационных автоматов в заданном базисе
- 39. Элементарные автоматы памяти
- 40. Системы счисления - основа различных кодов
- 41. Представление информации в эвм