10.5.12 Семейство процессоров Phenom
Процессоры для ПК на базе архитектуры AMD K10 образуют четыре новых семейства: Phenom FX, Phenom Х4, Phenom ХЗ, Phenom X2 (Athlon X2).
Phenom FX – это семейство флагманских моделей процессоров AMD. В его состав войдут четырехядерные процессоры с кодовым названием Deneb FX. Такие процессоры будут производиться по 45-нанометровому техпроцессу и по предварительным данным будут иметь разделяемый кэш третьего уровня (L3) объемом 6 Мбайт. Интегрированный контроллер памяти процессоров поддерживает память DDR2 и DDR3.
Phenom X4 – это семейство четырехядерных процессоров с кодовым названием Agena. Они имеют кэш L2 объемом 512 Кбайт на каждое ядро и разделяемый общий кэш L3 объемом 2 Мбайт. Интегрированный контроллер памяти поддерживает память DDR2. Процессоры совместимы с разъемами Socket AM2+ и АМ2 и имеют шину HyperTransport 3.0.
Phenom ХЗ – это семейство трехядерных процессоров с кодовым названием Toliman. Такие процессоры отличаются от процессоров Agena только количеством ядер. Отметим, что кэш L3 тоже равен 2 Мбайт. Процессоры совместимы с разъемами Socket AM2+ и АМ2 и имеют шину HyperTransport 3.0.
Phenom X2 – это семейство двухядерных процессоров с кодовым названием Кита. В сравнении с процессорами Toliman они урезаны еще больше: вместо четырех ядер в них присутствуют только два. Все остальные характеристики этих процессоров такие же, как у процессоров Tollman и Agena. По состоянию на начало 2009 года свет увидел всего один процессор этой архитектуры – Athlon X2 6500.
В старой системе маркировки процессоров AMD отражается позиционирование чипов (High-end, Mainstream, Low-end), энергопотребление и серия (Phenom X4, Phenom ХЗ и т. д.). Первая буква в маркировке процессора определяет его позиционирование, вторая – энергопотребление, а трехзначное число указывало на серию процессора. К примеру, семейству четырехядерных процессоров Phenom X4 соответствует серия 7хх, а семейству двухядерных процессоров Phenom Х2 – серия 6хх.
Для новых моделей, производимых по 45-нанометровому техпроцессу, компания AMD предложила новый порядок маркировки. С переходом на более тонкий техпроцесс индексы чипов AMD Phenom X4 стали пятизначными. Например, первые процессоры Deneb имеют названия Phenom X4 20550 и Phenom X4 20350. Не нужно искать скрытый смысл в этих цифрах. Просто компании потребовался удобный, на их взгляд, индекс, чтобы дифференцировать будущие модели процессоров.
Вопросы для самопроверки
В чём заключаются достоинства и недостатки длинноконвейерной архитектуры?
В чём заключаются основная идея технологии Wide Dynamic Execution?
В чём заключаются смысл технологии слияния макроопераций Macro-Fusion?
Какова роль DTS-сенсора?
В чём заключается преимущество общего кэша L2?
Какие преимущества даёт технология обнаружения программных циклов Loop Stream Detector?
Какова иерархия кэш-памяти в архитектуре Nehalem?
Что такое интегрированный интерфейс и в чём заключается универсальность интерфейса HyperTransport?
Каким образом было улучено предсказание переходов и ветвлений в микропроцессорах AMD K10?
Какие технологии энергосбережения используются в микропроцессорах AMD K10?
- Предисловие
- Глава 1. Общие сведения о микропроцессорах
- 1.1 Классификация микропроцессоров
- 1.2 Характеристики микропроцессоров
- 1.2.1 Тактовая частота
- 1.2.2 Архитектура процессора
- 1.2.3 Технологический процесс производства
- 1.2.4 Частота системной шины
- 1.2.5 Размер кэша
- 1.3 Типы архитектур микропроцессоров
- 1.4 Структурная схема микропроцессоров
- 1.4.1 Микропроцессор Фон-Неймана
- 1.4.2 Конвейер
- 1.4.3 Зависимость между частотой и количеством ступеней конвейера
- 1.5 Представление информации в эвм
- 1.5.1 Двоичное представление целых чисел
- 1.5.2 Представление символьной информации
- Глава 2. Архитектура микропроцессоров ia-32
- 2.1 Состав и функции регистров
- 2.1.1 Основные регистры
- 2.1.2 Регистры дополнительных функциональных модулей
- 2.2 Типы адресации
- 2.3 Система команд
- 2.3.1 Классификация команд
- 2.3.2 Формат команды
- 2.3.3 Однобайтовые команды
- 2.3.4 Непосредственно заданные операнды
- 2.3.5 Команды с регистровыми операндами
- 2.3.7 Команды с операндами, расположенными в памяти
- Глава 3. Организация многоуровневой памяти
- 3.1 Принцип построения многоуровневой памяти
- 3.2 Организация кэш-памяти
- 3.3 Протоколы когерентности памяти микропроцессоров
- 3.4 Страничная организация памяти
- Глава 4. Режимы работы процессоров ia-32
- 4.1 Обзор режимов работы
- 4.2 Реальный режим адресации
- 4.3 Защищённый режим
- 4.3.1 Дескрипторные таблицы
- 4.3.2 Дескрипторные регистры
- 4.3.3 Дескриптор
- 4.3.4 Односегментная модель памяти
- 4.3.5 Многосегментная модель памяти
- Глава 5. Страничная организация памяти в процессорах ia‑32
- 5.1 Каталог страниц
- 5.2 Таблица страниц
- 5.3 Страничная переадресация
- 5.4 Диспетчер виртуальных машин системы Microsoft Windows
- Глава 6. Архитектура процессоров с параллелизмом уровня команд
- 6.1 Подходы к использованию ресурса транзисторов в микропроцессорах
- 6.2 Суперскалярные процессоры и процессоры с длинным командным словом
- 6.3 Зависимости между командами, препятствующие их параллельному исполнению
- 6.4 Предварительная выборка команд и предсказание переходов
- 6.5 Условное выполнение команд в vliw-процессорах
- 6.6 Декодирование команд, переименование ресурсов и диспетчеризация
- 6.7 Исполнение команд
- 6.8 Завершение выполнения команды
- 6.9 Направления развития архитектуры процессоров с параллелизмом уровня команд
- Глава 7. Мультитредовые микропроцессоры
- 7.1 Основы мультитредовой архитектуры
- 7.2 Выявление тредов
- 7.3 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления программы
- 7.3.1 Мультитредовая модель выполнения программы
- 7.3.2 Мультитредовые программы
- 7.3.3 Аппаратные средства мультитредовой архитектуры
- 7.3.4 Преимущества мультитредовой архитектуры
- 7.4 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков данных программы
- 7.5 Специфика мультитредовых моделей распараллеливания
- Глава 8. Модуль обработки вещественных чисел
- 8.1 Представление чисел с плавающей запятой
- 8.2 Состав модуля fpu
- Глава 9. Основы 64-разрядной архитектуры
- 9.1 Состав и назначение регистров микропроцессора ia-64
- 9.2 Особенности архитектуры epic
- 9.3 Архитектура x86-64
- 9.4 Структура одноядерного процессора
- 9.5 Многоядерные процессоры
- 9.6 Зачем нужны “лишние” разряды?
- Глава 10. Современные 64-разрядные микропроцессоры корпораций Intel и amd
- 10.1 Архитектура Intel Core 2
- 10.1.1 Intel Wide Dynamic Execution
- 10.1.2 Intel Intelligent Power Capability
- 10.1.3 Intel Advanced Smart Cache
- 10.1.4 Intel Smart Memory Access
- 10.1.5 Intel Advanced Digital Media Boost
- 10.1.6 Логическая схема процессора
- 10.2 Архитектура Intel Core i7
- 10.2.1 Технология Hyper-Threading в архитектуре Nehalem
- 10.2.2 Иерархия кэш-памяти в архитектуре Nehalem
- 10.3 Хронология развития семейств микропроцессоров с архитектурой Nehalem
- 10.4 Архитектура amd Athlon 64
- 10.4.1 Ядро процессора
- 10.4.3 Контроллер памяти
- 10.4.4 Контроллер HyperTransport
- 10.5 Архитектура amd k10
- 10.4.1 Технология amd Memory Optimizer Technology
- 10.5.2 Ядро процессора
- 10.5.3 Предвыборка данных и инструкций
- 10.5.4 Выборка из кэша
- 10.5.5 Предсказание переходов и ветвлений
- 10.5.6 Процесс декодирования
- 10.5.7 Диспетчеризация и переупорядочение микроопераций
- 10.5.8 Выполнение микроопераций
- 10.5.9 Технологии энергосбережения
- 10.5.10 Шина HyperTransport 3.0
- 10.5.11 Семейство процессоров Barcelona
- 10.5.12 Семейство процессоров Phenom
- Глава 11. Технологии, поддерживаемые современными микропроцессорами
- 11.1 Технологии тепловой защиты
- 11.1.1 Технология Thermal Monitor
- 11.1.2 Технология Thermal Monitor 2
- 11.1.3 Режим аварийного отключения
- 11.2 Технологии энергосбережения
- 11.2.1 Технология Enhanced Intel SpeedStep
- 11.2.2 Технология Cool'n'Quiet
- 11.3 Технология расширенной памяти
- 11.4 Технология антивирусной защиты
- 11.5 Технология виртуализации
- 11.6 Реализация технологий в современных микроархитектурах
- 11.6.2 Em64t – NetBurst
- 11.6.3 Intel Core
- 11.6.4 Intel Atom
- 11.6.5 Nehalem
- 11.6.6 Xeon
- Глава 12. Графические микропроцессоры
- 12.1 Основные термины и определения
- 12.2 Технологии построения трёхмерного изображения
- 12.2.1 Технологии повышения реалистичности трехмерного изображения
- 12.3 Шейдерный процессор
- 12.4 Особенности современных графических процессоров
- Глава 13. Однокристальные микроконтроллеры
- 13.1 Общая характеристика микроконтроллеров
- 13.2 Микроконтроллеры семейства avr
- Почему именно avr?
- 13.3 Общие сведения об омк avr
- 13.4 Характеристики avr-микроконтроллеров
- Глава 14. Технология производства микропроцессоров
- 14.1 Особенности производства процессоров
- 14.2 Новые технологические решения
- 14.3 Технология производства сверхбольших интегральных схем
- I. Выращивание кристалла кремния
- II. Создание проводящих областей
- III. Тестирование
- IV. Изготовление корпуса
- V. Доставка
- 14.4 Перспективы производства сбис
- Англо-русский словарь терминов и аббревиатур
- Библиографический список
- Интернет-ссылки
- 350072. Краснодар, ул. Московская, 2, кор. А.