11.1.1 Технология Thermal Monitor
Технология Thermal Monitor реализована следующим образом: при нагревании процессора до некоторой критической температуры генерируется специальный сигнал, в результате чего активизируется режим тепловой защиты процессора, при котором он остывает. При достижении нормальной температуры процессор возвращается к обычному режиму работы. Естественно, что в режиме активизации тепловой защиты процессор работает не на полную мощность, то есть его остывание происходит за счет потери производительности.
Рассмотрим данную технологию более подробно. Для контроля температуры во все современные процессоры Intel встроены два термодатчика (термодиода), один из которых сообщает системе аппаратного мониторинга материнской платы температуру ядра процессора, а еще один является частью схемы Thermal Monitor и расположен в самой «горячей» точке ядра процессора – возле блоков ALU.
При достижении некоторого критического значения температуры (по состоянию термодатчика, расположенного возле блоков ALU) генерируется специальный сигнал PROCHOT#, который активизирует специальный модуль Thermal Control Unit. Температура, при которой «выставляется» сигнал PROCHOT#, индивидуально калибруется для каждого процессора при производстве исходя из величины рассеиваемой им мощности. Однажды заданное значение температуры для сигнала PROCHOT# уже не может быть изменено.
Задача модуля Thermal Control Unit заключается в том, чтобы модулировать номинальную тактовую частоту процессора. Смысл модуляции заключается в том, что в период действия сигнала PROCHOT# на номинальный сигнал тактовой частоты процессора накладывается еще один служебный сигнал, частота которого существенно ниже тактовой частоты процессора. В результате частота, которая подается на вычислительные блоки процессора, является прореженной, и можно говорить о том, что ядро процессора работает на пониженной частоте (рис. 11.1). Важно отметить, что технология Thermal Monitor никак не влияет на частоту тактирования процессора, а лишь модулирует частоту тактирования вычислительных блоков процессора.
В результате образования «холостых» тактов процессор будет иметь меньшую производительность и меньшее тепловыделение, а температура процессора начнет уменьшаться. С понижением температуры ядра количество холостых циклов начнет уменьшаться и, как только температура ядра процессора снизится ниже порогового значения примерно на 1С, сигнал PROCHOT# исчезнет, а номинальная частота процессора совпадет с эффективной.
Важно отметить, что сигнал PROCHOT# может быть «выставлен» при достижении критической температуры не только процессором, но и системами тепловой защиты других компонентов, например модуля регулировки напряжения (Voltage Regulation, VR) или модулей памяти.
- Предисловие
- Глава 1. Общие сведения о микропроцессорах
- 1.1 Классификация микропроцессоров
- 1.2 Характеристики микропроцессоров
- 1.2.1 Тактовая частота
- 1.2.2 Архитектура процессора
- 1.2.3 Технологический процесс производства
- 1.2.4 Частота системной шины
- 1.2.5 Размер кэша
- 1.3 Типы архитектур микропроцессоров
- 1.4 Структурная схема микропроцессоров
- 1.4.1 Микропроцессор Фон-Неймана
- 1.4.2 Конвейер
- 1.4.3 Зависимость между частотой и количеством ступеней конвейера
- 1.5 Представление информации в эвм
- 1.5.1 Двоичное представление целых чисел
- 1.5.2 Представление символьной информации
- Глава 2. Архитектура микропроцессоров ia-32
- 2.1 Состав и функции регистров
- 2.1.1 Основные регистры
- 2.1.2 Регистры дополнительных функциональных модулей
- 2.2 Типы адресации
- 2.3 Система команд
- 2.3.1 Классификация команд
- 2.3.2 Формат команды
- 2.3.3 Однобайтовые команды
- 2.3.4 Непосредственно заданные операнды
- 2.3.5 Команды с регистровыми операндами
- 2.3.7 Команды с операндами, расположенными в памяти
- Глава 3. Организация многоуровневой памяти
- 3.1 Принцип построения многоуровневой памяти
- 3.2 Организация кэш-памяти
- 3.3 Протоколы когерентности памяти микропроцессоров
- 3.4 Страничная организация памяти
- Глава 4. Режимы работы процессоров ia-32
- 4.1 Обзор режимов работы
- 4.2 Реальный режим адресации
- 4.3 Защищённый режим
- 4.3.1 Дескрипторные таблицы
- 4.3.2 Дескрипторные регистры
- 4.3.3 Дескриптор
- 4.3.4 Односегментная модель памяти
- 4.3.5 Многосегментная модель памяти
- Глава 5. Страничная организация памяти в процессорах ia‑32
- 5.1 Каталог страниц
- 5.2 Таблица страниц
- 5.3 Страничная переадресация
- 5.4 Диспетчер виртуальных машин системы Microsoft Windows
- Глава 6. Архитектура процессоров с параллелизмом уровня команд
- 6.1 Подходы к использованию ресурса транзисторов в микропроцессорах
- 6.2 Суперскалярные процессоры и процессоры с длинным командным словом
- 6.3 Зависимости между командами, препятствующие их параллельному исполнению
- 6.4 Предварительная выборка команд и предсказание переходов
- 6.5 Условное выполнение команд в vliw-процессорах
- 6.6 Декодирование команд, переименование ресурсов и диспетчеризация
- 6.7 Исполнение команд
- 6.8 Завершение выполнения команды
- 6.9 Направления развития архитектуры процессоров с параллелизмом уровня команд
- Глава 7. Мультитредовые микропроцессоры
- 7.1 Основы мультитредовой архитектуры
- 7.2 Выявление тредов
- 7.3 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления программы
- 7.3.1 Мультитредовая модель выполнения программы
- 7.3.2 Мультитредовые программы
- 7.3.3 Аппаратные средства мультитредовой архитектуры
- 7.3.4 Преимущества мультитредовой архитектуры
- 7.4 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков данных программы
- 7.5 Специфика мультитредовых моделей распараллеливания
- Глава 8. Модуль обработки вещественных чисел
- 8.1 Представление чисел с плавающей запятой
- 8.2 Состав модуля fpu
- Глава 9. Основы 64-разрядной архитектуры
- 9.1 Состав и назначение регистров микропроцессора ia-64
- 9.2 Особенности архитектуры epic
- 9.3 Архитектура x86-64
- 9.4 Структура одноядерного процессора
- 9.5 Многоядерные процессоры
- 9.6 Зачем нужны “лишние” разряды?
- Глава 10. Современные 64-разрядные микропроцессоры корпораций Intel и amd
- 10.1 Архитектура Intel Core 2
- 10.1.1 Intel Wide Dynamic Execution
- 10.1.2 Intel Intelligent Power Capability
- 10.1.3 Intel Advanced Smart Cache
- 10.1.4 Intel Smart Memory Access
- 10.1.5 Intel Advanced Digital Media Boost
- 10.1.6 Логическая схема процессора
- 10.2 Архитектура Intel Core i7
- 10.2.1 Технология Hyper-Threading в архитектуре Nehalem
- 10.2.2 Иерархия кэш-памяти в архитектуре Nehalem
- 10.3 Хронология развития семейств микропроцессоров с архитектурой Nehalem
- 10.4 Архитектура amd Athlon 64
- 10.4.1 Ядро процессора
- 10.4.3 Контроллер памяти
- 10.4.4 Контроллер HyperTransport
- 10.5 Архитектура amd k10
- 10.4.1 Технология amd Memory Optimizer Technology
- 10.5.2 Ядро процессора
- 10.5.3 Предвыборка данных и инструкций
- 10.5.4 Выборка из кэша
- 10.5.5 Предсказание переходов и ветвлений
- 10.5.6 Процесс декодирования
- 10.5.7 Диспетчеризация и переупорядочение микроопераций
- 10.5.8 Выполнение микроопераций
- 10.5.9 Технологии энергосбережения
- 10.5.10 Шина HyperTransport 3.0
- 10.5.11 Семейство процессоров Barcelona
- 10.5.12 Семейство процессоров Phenom
- Глава 11. Технологии, поддерживаемые современными микропроцессорами
- 11.1 Технологии тепловой защиты
- 11.1.1 Технология Thermal Monitor
- 11.1.2 Технология Thermal Monitor 2
- 11.1.3 Режим аварийного отключения
- 11.2 Технологии энергосбережения
- 11.2.1 Технология Enhanced Intel SpeedStep
- 11.2.2 Технология Cool'n'Quiet
- 11.3 Технология расширенной памяти
- 11.4 Технология антивирусной защиты
- 11.5 Технология виртуализации
- 11.6 Реализация технологий в современных микроархитектурах
- 11.6.2 Em64t – NetBurst
- 11.6.3 Intel Core
- 11.6.4 Intel Atom
- 11.6.5 Nehalem
- 11.6.6 Xeon
- Глава 12. Графические микропроцессоры
- 12.1 Основные термины и определения
- 12.2 Технологии построения трёхмерного изображения
- 12.2.1 Технологии повышения реалистичности трехмерного изображения
- 12.3 Шейдерный процессор
- 12.4 Особенности современных графических процессоров
- Глава 13. Однокристальные микроконтроллеры
- 13.1 Общая характеристика микроконтроллеров
- 13.2 Микроконтроллеры семейства avr
- Почему именно avr?
- 13.3 Общие сведения об омк avr
- 13.4 Характеристики avr-микроконтроллеров
- Глава 14. Технология производства микропроцессоров
- 14.1 Особенности производства процессоров
- 14.2 Новые технологические решения
- 14.3 Технология производства сверхбольших интегральных схем
- I. Выращивание кристалла кремния
- II. Создание проводящих областей
- III. Тестирование
- IV. Изготовление корпуса
- V. Доставка
- 14.4 Перспективы производства сбис
- Англо-русский словарь терминов и аббревиатур
- Библиографический список
- Интернет-ссылки
- 350072. Краснодар, ул. Московская, 2, кор. А.