6.3 Зависимости между командами, препятствующие их параллельному исполнению
В соответствии с моделью последовательного программирования программы пишутся в предположении, что команды будут выполнены в том же порядке, в каком они представлены в программе. Однако с целью достижения большей эффективности современные процессоры пытаются выполнять несколько команд одновременно и, в некоторых случаях, в порядке, отличном от их исходной последовательности в программе. Это переупорядочение может быть выполнено в трансляторе и/или аппаратно во время выполнения.
ILP-процессоры и компиляторы обычно преобразуют полностью упорядоченное множество команд исходной программы в частично упорядоченное множество, структурированное зависимостями по данным и управлению. Зависимости по управлению (которые проявляются как переходы по условию) представляют главное препятствие высокопараллельному выполнению потому, что эти зависимости должны быть установлены прежде, чем будут выполнены все последующие команды.
Текст последовательной программы, представленной на языке высокого уровня, компилируется в машинный код, отражающий статическую структуру программы, т.е. упорядоченное множество команд (инструкций) в памяти компьютера. Процесс выполнения программы с конкретными наборами входных данных может быть представлен динамической структурой программы, т. е. множеством последовательностей команд в порядке их исполнения.
Повысить степень параллелизма программы можно, изменяя соответствующим образом ее статическую или динамическую структуру. Поскольку статическая структура программы однозначно соответствует ее исходному тексту (в предположении неизменности компилятора), то изменение статической структуры сводится к изменению исходного кода, что, в общем случае, не всегда возможно. Динамическая же структура программы может быть изменена при неизменной статической структуре. И главной целью такого изменения должно быть повышение степени параллельного исполнения команд.
Допустимые границы преобразования динамической структуры программы задают существующие на множестве инструкций отношения: зависимость по управлению и зависимость по данным. При описании архитектур суперскалярных процессоров используется модель окна исполнения. При исполнении программы микропроцессор как бы продвигает по статической структуре программы окно исполнения, тем самым, ограничивая совокупность команд, которые рассматриваются на предмет наличия между ними зависимостей по данным и управлению. Команды в окне могут исполняться параллельно, если между ними нет зависимости.
Для устранения зависимостей, вызванных командами переходов, используется метод предсказания, позволяющий извлекать и условно исполнять команды предсказанного перехода. Если позднее обнаруживается, что предсказание было сделано верно, результаты условно исполненных команд принимаются. Если предсказание было ошибочным, состояние процессора восстанавливается на момент принятия решения о выполнении перехода.
Команды, помещенные в окно исполнения, могут быть зависимы по данным. Эти зависимости обусловлены использованием одних и тех же ресурсов памяти (регистров, ячеек памяти) в разных командах. Поэтому для правильного исполнения программы необходимо использование этих ресурсов в предписываемом программой порядке.
Все виды зависимостей по данным могут быть классифицированы по типу ассоциаций: RAR - "чтение после чтения", WAR - "запись после чтения" и WAW - "запись после записи", RAW - "чтение после записи". Пример различных зависимостей команд по данным показан на рисунке 6.2.
Некоторые из зависимостей по данным могут быть устранены. RAR, по сути дела, соответствует отсутствию зависимостей, поскольку в данном случае порядок выполнения команд не имеет значения. Действительной зависимостью является только "чтение после записи" (RAW), т. к. необходимо прочитать предварительно записанные новые данные, а не старые.
Лишние зависимости по данным появляются в результате "записи после чтения" (WAR) и "записи после записи" (WAW). Зависимость WAR состоит в том, что команда должна записать новое значение в ячейку памяти или регистр, из которых должно быть произведено чтение. Лишние зависимости появляются по нескольким причинам: неоптимизированный программный код, ограничение количества регистров, стремление к экономии памяти, наличие программных циклов. Важно отметить, что запись может быть произведена в любой свободный ресурс, а не только тот, который указан в программе.
После удаления лишних зависимостей по управлению и данным команды могут исполняться параллельно. Формирование расписания параллельного выполнения команд возлагается на аппаратные средства микропроцессора. Это расписание учитывает существующие зависимости между командами и имеющиеся функциональные модули процессора.
В современных микропроцессорах широко используется принцип конвейерного выполнения отдельных элементарных операций. Конвейеризация внутренних процессов позволяет получать результат в каждом процессорном такте.
- Предисловие
- Глава 1. Общие сведения о микропроцессорах
- 1.1 Классификация микропроцессоров
- 1.2 Характеристики микропроцессоров
- 1.2.1 Тактовая частота
- 1.2.2 Архитектура процессора
- 1.2.3 Технологический процесс производства
- 1.2.4 Частота системной шины
- 1.2.5 Размер кэша
- 1.3 Типы архитектур микропроцессоров
- 1.4 Структурная схема микропроцессоров
- 1.4.1 Микропроцессор Фон-Неймана
- 1.4.2 Конвейер
- 1.4.3 Зависимость между частотой и количеством ступеней конвейера
- 1.5 Представление информации в эвм
- 1.5.1 Двоичное представление целых чисел
- 1.5.2 Представление символьной информации
- Глава 2. Архитектура микропроцессоров ia-32
- 2.1 Состав и функции регистров
- 2.1.1 Основные регистры
- 2.1.2 Регистры дополнительных функциональных модулей
- 2.2 Типы адресации
- 2.3 Система команд
- 2.3.1 Классификация команд
- 2.3.2 Формат команды
- 2.3.3 Однобайтовые команды
- 2.3.4 Непосредственно заданные операнды
- 2.3.5 Команды с регистровыми операндами
- 2.3.7 Команды с операндами, расположенными в памяти
- Глава 3. Организация многоуровневой памяти
- 3.1 Принцип построения многоуровневой памяти
- 3.2 Организация кэш-памяти
- 3.3 Протоколы когерентности памяти микропроцессоров
- 3.4 Страничная организация памяти
- Глава 4. Режимы работы процессоров ia-32
- 4.1 Обзор режимов работы
- 4.2 Реальный режим адресации
- 4.3 Защищённый режим
- 4.3.1 Дескрипторные таблицы
- 4.3.2 Дескрипторные регистры
- 4.3.3 Дескриптор
- 4.3.4 Односегментная модель памяти
- 4.3.5 Многосегментная модель памяти
- Глава 5. Страничная организация памяти в процессорах ia‑32
- 5.1 Каталог страниц
- 5.2 Таблица страниц
- 5.3 Страничная переадресация
- 5.4 Диспетчер виртуальных машин системы Microsoft Windows
- Глава 6. Архитектура процессоров с параллелизмом уровня команд
- 6.1 Подходы к использованию ресурса транзисторов в микропроцессорах
- 6.2 Суперскалярные процессоры и процессоры с длинным командным словом
- 6.3 Зависимости между командами, препятствующие их параллельному исполнению
- 6.4 Предварительная выборка команд и предсказание переходов
- 6.5 Условное выполнение команд в vliw-процессорах
- 6.6 Декодирование команд, переименование ресурсов и диспетчеризация
- 6.7 Исполнение команд
- 6.8 Завершение выполнения команды
- 6.9 Направления развития архитектуры процессоров с параллелизмом уровня команд
- Глава 7. Мультитредовые микропроцессоры
- 7.1 Основы мультитредовой архитектуры
- 7.2 Выявление тредов
- 7.3 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления программы
- 7.3.1 Мультитредовая модель выполнения программы
- 7.3.2 Мультитредовые программы
- 7.3.3 Аппаратные средства мультитредовой архитектуры
- 7.3.4 Преимущества мультитредовой архитектуры
- 7.4 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков данных программы
- 7.5 Специфика мультитредовых моделей распараллеливания
- Глава 8. Модуль обработки вещественных чисел
- 8.1 Представление чисел с плавающей запятой
- 8.2 Состав модуля fpu
- Глава 9. Основы 64-разрядной архитектуры
- 9.1 Состав и назначение регистров микропроцессора ia-64
- 9.2 Особенности архитектуры epic
- 9.3 Архитектура x86-64
- 9.4 Структура одноядерного процессора
- 9.5 Многоядерные процессоры
- 9.6 Зачем нужны “лишние” разряды?
- Глава 10. Современные 64-разрядные микропроцессоры корпораций Intel и amd
- 10.1 Архитектура Intel Core 2
- 10.1.1 Intel Wide Dynamic Execution
- 10.1.2 Intel Intelligent Power Capability
- 10.1.3 Intel Advanced Smart Cache
- 10.1.4 Intel Smart Memory Access
- 10.1.5 Intel Advanced Digital Media Boost
- 10.1.6 Логическая схема процессора
- 10.2 Архитектура Intel Core i7
- 10.2.1 Технология Hyper-Threading в архитектуре Nehalem
- 10.2.2 Иерархия кэш-памяти в архитектуре Nehalem
- 10.3 Хронология развития семейств микропроцессоров с архитектурой Nehalem
- 10.4 Архитектура amd Athlon 64
- 10.4.1 Ядро процессора
- 10.4.3 Контроллер памяти
- 10.4.4 Контроллер HyperTransport
- 10.5 Архитектура amd k10
- 10.4.1 Технология amd Memory Optimizer Technology
- 10.5.2 Ядро процессора
- 10.5.3 Предвыборка данных и инструкций
- 10.5.4 Выборка из кэша
- 10.5.5 Предсказание переходов и ветвлений
- 10.5.6 Процесс декодирования
- 10.5.7 Диспетчеризация и переупорядочение микроопераций
- 10.5.8 Выполнение микроопераций
- 10.5.9 Технологии энергосбережения
- 10.5.10 Шина HyperTransport 3.0
- 10.5.11 Семейство процессоров Barcelona
- 10.5.12 Семейство процессоров Phenom
- Глава 11. Технологии, поддерживаемые современными микропроцессорами
- 11.1 Технологии тепловой защиты
- 11.1.1 Технология Thermal Monitor
- 11.1.2 Технология Thermal Monitor 2
- 11.1.3 Режим аварийного отключения
- 11.2 Технологии энергосбережения
- 11.2.1 Технология Enhanced Intel SpeedStep
- 11.2.2 Технология Cool'n'Quiet
- 11.3 Технология расширенной памяти
- 11.4 Технология антивирусной защиты
- 11.5 Технология виртуализации
- 11.6 Реализация технологий в современных микроархитектурах
- 11.6.2 Em64t – NetBurst
- 11.6.3 Intel Core
- 11.6.4 Intel Atom
- 11.6.5 Nehalem
- 11.6.6 Xeon
- Глава 12. Графические микропроцессоры
- 12.1 Основные термины и определения
- 12.2 Технологии построения трёхмерного изображения
- 12.2.1 Технологии повышения реалистичности трехмерного изображения
- 12.3 Шейдерный процессор
- 12.4 Особенности современных графических процессоров
- Глава 13. Однокристальные микроконтроллеры
- 13.1 Общая характеристика микроконтроллеров
- 13.2 Микроконтроллеры семейства avr
- Почему именно avr?
- 13.3 Общие сведения об омк avr
- 13.4 Характеристики avr-микроконтроллеров
- Глава 14. Технология производства микропроцессоров
- 14.1 Особенности производства процессоров
- 14.2 Новые технологические решения
- 14.3 Технология производства сверхбольших интегральных схем
- I. Выращивание кристалла кремния
- II. Создание проводящих областей
- III. Тестирование
- IV. Изготовление корпуса
- V. Доставка
- 14.4 Перспективы производства сбис
- Англо-русский словарь терминов и аббревиатур
- Библиографический список
- Интернет-ссылки
- 350072. Краснодар, ул. Московская, 2, кор. А.