Коаксиальный кабель
Коаксиальный (coaxial) кабель (нередко называемый просто "коаксиал") бывает двух видов: толстый и тонкий. Толстый кабель использовался в первых сетях и нередко служил магистралью, связывающей разные сети. Это был первый тип передающей среды, определенный стандартами Ethernet, разработанными в начале 1980-х годов. В настоящее время толстый кабель применяется редко, поскольку имеются более выигрышные альтернативы, например, оптоволокно. Тонкий коаксиальный кабель имеет значительно меньший диаметр по сравнению с толстым кабелем и используется для подключения рабочих станций к локальным сетям (хотя он встречается все реже и реже). В практическом задании 3-2 вы познакомитесь с толстым тонким коаксиальными кабелями, а также и с другими типами коммуникационных кабелей.
Толстый коаксиальный кабель
Толстый коаксиальный кабель (также называемый "thicknet" – буквально "толстая сеть") в середине имеет медный или плакированный медно-алюминиевый проводник (рис. 1). Толстый кабель довольно большой в диаметре (0,4 дюйма или 10,16мм) по сравнению с тонким кабелем (0,2 дюйма). Проводник окружен изолятором и алюминиевым экраном, в который завернут изолятор.
Алюминиевый экран покрывает защитная оболочка, сделанная из поливинилхлорида (ПВХ) или тефлона. Такой тип кабеля также называется кабелем RG-8.
1 центральный проводник; 2 изолятор; 3 проводник-экран; 4 внешний изолятор
Рис. 1 Толстый коаксиальный кабель
Иногда сетевой кабель располагается в вентиляционной зоне (plenum area), например, в пространстве между фальшпотолком и перекрытием, имеющимся по всему зданию. Поскольку при горении ПВХ - оболочка может выделять токсичный газ, в подобных случаях лучше (и зачастую требуется противопожарными правилами) применять специальный кабель (plenum cable) с тефлоновой оболочкой, не выделяющей при горении вредных веществ.
Защитная оболочка кабеля имеет отметки, расположенные через 2,5 м и указывающие места установки устройств подключения к сети (приемопередатчиков). Если расстояние между устройствами будет меньше 2,5 м, затухание сигнала может увеличиться, что вызовет появление сетевых ошибок.
Приемопередатчик представляет собой трансивер – модуль подключения к среде передачи данных (media access unit, MAU), который напитывается от кабеля небольшим током (0,5 А) и оборудован 15- контактным разъемом интерфейса подключаемых устройств (attachment unit interface, AUI). AUI-разъем соединяется кабелем с сетевым узлом, у которого имеется свое AUI-подключение к сетевому адаптеру (рис. 2). AUI – это стандартный интерфейс для соединителей и интерфейсных схем, электрические характеристики которого позволяют физически подключать устройство к коаксиальному кабелю, витой паре или оптоволоконному магистральному кабелю. Толстый AUI- кабель может иметь длину до 50 м, а тонкий или офисный AUI-кабель в длину не превышает 12,5 м.
Полное сопротивление, или импеданс (активное и реактивное сопротивление), толстого коаксиального кабеля равняется 50 Ом, и сегменты кабеля заканчиваются N-коннекторами с подключенным 50- омным резистором. Импеданс представляет собой полное сопротивление протекающему току и измеряется в Омах. Он влияет на то, с какой скоростью фрейм или пакет могут передаваться по проводнику в оптимальных условиях. Терминатор содержит резистор, поглощающий каждый сигнал, достигающий конца сети. Без терминатора сегмент сети будет нарушать спецификации IEEE, поскольку сигналы смогут отражаться и возвращаться обратно в кабель, по которому они передавались. Отраженный сигнал будет нарушать временные параметры сети и может накладываться на новые передаваемые сигналы.
Рис. 2 Подключение к толстому коаксиальному кабелю
Толстый коаксиальный кабель плохо гнется, поэтому при его использовании необходимо следить за минимальным радиусом скруглений. Положительным качеством толстого кабеля является то, что по сравнению с тонким кабелем он лучше защищен от радио- или электромагнитных помех (помехи физического уровня), поскольку имеет больший диаметр проводника алюминиевого экрана.
Как показано в табл. 1, толстый коаксиальный кабель используется в шинных сетях, скорость передачи в которых обычно равна 10 Мбит/с. В соответствии со стандартами IEEE максимальная длина сегмента кабеля равна 500 м. Кратко эти спецификации называются 10Base5. Цифра 10 означает скорость передачи по кабелю, равную 10 Мбит/с. Base означает, что используется узкополосная, а не широкополосная передача данных. Цифра 5 соответствует максимальной длине сегмента кабеля, равной 5 * 100 м.
Таблица 1. Параметры толстого коаксиального кабеля (WBaseS) при использовании в сетях Ethernet
Параметр | Спецификация Ethernet |
Волновое сопротивление (импеданс) | 50 Ом |
Максимальная длина | 500 м |
Максимальное количество кабельных отводов в сегменте | 100 (включая терминаторы) |
Минимальное расстояние между отводами | 2,5 м |
Максимальная длина AUI-кабеля | 50 м для толстого AUI-кабеля и 12,5 м для тонкого (офисного) AUI-кабеля |
Максимальная скорость | 10 Мбит/с |
Полоса рабочих частот | Узкополосная передача |
Максимальное количество соединенных сегментов | 5 |
Максимальное количество сегментов имеющих отводы | 3 |
Максимальное количество повторителей (сколько раз сигнал может усиливаться с восстановлением синхронизации) | 4 |
Максимальная общая длина с использованием повторителей | 2500 м |
При узкополосной передаче (baseband) вся емкость передающей среды используется одним сигналом данных. Следовательно, в каждый момент времени на передачу может работать только один узел. При широкополосной передаче (broadband) в одной передающей среде реализуются несколько коммуникационных каналов. Благодаря этому несколько узлов могут передавать сигналы одновременно. Способность, канала передавать данные с определенной скоростью, например, 10 Мбит/с или 100 Мбит/с, называется его полосой пропускания (bandwidth), или пропускной способностью.
Толстый коаксиальный кабель может использоваться для обоих способов передачи сигналов, но обычно он применяется в цифровых сетях для узкополосной передачи данных. Толстый кабель не так распространен, как другие типы кабелей, что объясняется его большим диаметром и сложностями при его укладке и установке терминаторов. Кроме этого, для его приобретения и монтажа требуются значительные расходы. Однако он очень долговечен, надежен и защищен от помех.
Тонкий коаксиальный кабель
Тонкий коаксиальный кабель напоминает обычный телевизионный кабель, однако, в отличие от телевизионного кабеля, электрические характеристики сетевого кабеля очень точно соблюдаются и должны соответствовать спецификациям, установленным IEEE. Требования для сетей Ethernet определяют импеданс тонкого кабеля, равный 50 Ом (как и для толстого коаксиального кабеля). Тонкий кабель имеет маркировку RG-58A/U. Сетевые администраторы называют его кабелем 10Base2 (а также "thinnet" или "cheapernet" буквально, "тонкая или дешевая сеть"), поскольку его максимальная скорость передачи равна 10 Мбит/с, он может иметь сегменты длиной до 185 (до 1990 года она равнялась 200 м) и используется для узкополосной (Base) передачи данных. Однако на перечисленные параметры влияют свойства сетевого оборудования, например, повторители (репитеры) могут усиливать и повторно синхронизировать сигнал для передачи на большие расстояния.
В центре тонкого коаксиального кабеля находится медный или плакированный медью алюминиевый проводник, окруженный изолирующим материалом. Этот изолятор обернут в медную оплетку, поверх которой в высококачественных кабелях идет слой алюминиевой фольги. Сверху кабель защищает поливинилхлоридной или тефлоновой изолирующей оболочкой. Вся конструкция напоминает устройство толстого кабеля, показанного на рис. 1, однако тонкий кабель значительно меньше в диаметре и бывает окрашен различные цвета.
Тонкий коаксиальный кабель подключается к байонетному разъему (Bayonet Connector, BNC), который в свою очередь соединен с Т-образным коннектором (в практическом задании 3-3 рассматриваются различные виды кабельных разъемов, включая BNC-соединители). Центральная часть коннектора подключается к сетевому адаптеру компьютера или сетевого устройства. Если компьютер или устройство расположено на конце кабеля то на свободном конце Т-коннектора устанавливается терминатор, как показано на рис. 3. В практическом задании 3-4 рассказывается, как устанавливать BNC-разъем на тонком кабеле.
BNC-разъем устроен по типу штыкового соединения (bayonet – штык). Вилочная часть разъема имеет два небольших выступа, которые входят в спиральные канавки, расположенные на гнездовой половине разъема. Для соединения нужно половинки разъема повернуть относительно друг друга на четверть оборота.
Иногда неопытные монтажники или пользователи по ошибке включают ответвительный кабель (небольшой отрезок тонкого кабеля) между Т-коннектором и сетевой платой устройства, соединенного с сетью, и получается что Т-коннектор не связан непосредственно с сетевой платой. Это делается в попытке увеличить расстояние между коннектором и платой или в случае, когда неудобно подключать коннектор непосредственно к плате. Такое решение не соответствует спецификациям IEEE и может вызвать проблемы в сети, например, привести к отсутствию соединения.
Рис. 3 Байонетный (BNC) Т-коннектор с терминатором на одном конце
Совет
Неправильное применение ответвительного кабеля может привести к серьезным последствиям. Одна рабочая станция, подключенная к Т-коннектору через ответвительный кабель, может нарушить работоспособность всех других станций, подключенных к данному сегменту основного кабеля.
Тонкий коаксиальный кабель устанавливать проще и дешевле, чем толстый кабель, хотя еще проще устанавливать и использовать витую пару. Это одна из причин того, что в настоящее время коаксиальные кабели применяются в ограниченном объеме. Преимуществом тонкого кабеля по сравнению с витой парой является его устойчивость к радио- и электромагнитным помехам. В табл. 2 перечислены характеристики тонкого коаксиального кабеля при работе в сетях Ethernet.
Таблица 2. Параметры тонкого коаксиального кабеля (10Base2) при использовании в сетях Ethernet
Параметр | Спецификация Ethernet |
Волновое сопротивление (импеданс) | 50 Ом |
Максимальная длина | 185м |
Максимальное количество кабельных отводов в сегменте | 30 (включая терминаторы) |
Минимальное расстояние между отводами | 0,5 м |
Максимальная скорость | 10 Мбит/с |
Полоса рабочих частот | Узкополосная передача |
Максимальное количество соединенных сегментов | 5 |
Максимальное количество сегментов, имеющих отводы | 3 |
Максимальное количество повторителей (сколько раз сигнал может усиливаться с восстановлением синхронизации) | 4 |
Максимальная общая длина с использованием повторителей | 925 м |
Примечание
Коаксиальные кабели по-прежнему используются при наличии значительных радио- и электромагнитных помех, например, в машинных цехах и на заводах где имеются мощные двигатели или другое электрическое оборудование.
Совет
Если пользователи жалуются на замедление работы сети или потерю соединений, то для обнаружения проблем в тонком коаксиальном кабеле исследуйте места, где кабель может быть слишком изогнут, прижат столом или загнут возле разъема.
- Учебник Проектирование и внедрение компьютерных сетей
- Глава 1 Обзор локальных и глобальных сетей 13
- Часть 1 14
- Часть 2 65
- Глава 2 Взаимодействие глобальных и локальных сетей 105
- Глава 3 Методы передачи физического сигнала 167
- Часть 1. Теоретическая часть. 167
- Часть 2. Специальная часть. 210
- Глава 4 Сетевое передающее оборудование 249
- Часть1 Аналитическая часть 250
- Часть 2 Проектная часть 311
- Глава 5 Протоколы локальных вычислительных сетейВведение 366
- Часть 1 Аналитическая часть 367
- Часть 2. Проектная часть 404
- Глава 6 Прошлое, настоящее и будущее протокола tcp 532
- 5. Основной уровень 578
- 6. Прикладной уровень 590
- Глава 7: Методы передачи данных в глобальных сетях 609
- Глава 8 Технология atm 674
- Глава 9 Технологии беспроводных сетей 729
- Часть 1. Аналитическая часть 730
- Часть 2. Практическая часть 771
- Часть 1. Теоретическая часть 819
- Часть 2 Специальная часть 878
- Глава 11 Базовые принципы проектирования локальных и глобальных сетей 881
- Часть 1. Теоретическая часть. 881
- Часть 2 Специальная часть 947
- Глава 1 Обзор локальных и глобальных сетей Введение
- Часть 1
- 1.1 Виды сетей. Основные понятия
- 1.1.1 Определение типа сети
- 1.1.2 Причины, обусловившие появление локальных и глобальных сетей
- 1.1.3 Хронология основных событий, предшествующих появлению компьютерных сетей
- 1.1.4 История локальных и глобальных сетей
- 1.1.5 Интеграция локальных и глобальных сетей
- 1.1.6 Передача данных между локальными и глобальными сетями
- 1.2. Введение в проектирование сетей
- 1.3. Основные термины
- Часть 2
- 2.1. Как избежать простоев сети?
- 2.1.1Отказоустойчивые системы
- 2.2. Опорные мультисервисные сети на основе радиорелейных линий1
- 2.2.1 Специалисты рекомендуют
- 2.2.2 Радиочастотный план
- 2.2.3 Последняя миля
- 2.2.4 Оборудование сети
- 2.2.5 Выбор антенн
- 2.2.6 Расположение антенных постов
- 2.3. Домашние сети на электропроводах2
- 2.3.1 Адаптеры Edimax
- 2.3.2 Устройство
- 2.3.3 Тестирование
- 2.5. Сеть по телефонной проводке: стандарт HomePna 2.03
- 2.6. Технология Bluetooth
- 2.7. Беспроводные сети4
- Заключение
- Глава 2 Взаимодействие глобальных и локальных сетей Введение
- 1. Эталонная модель взаимодействия открытых систем osi
- 1.1. Физический уровень
- 1.2. Канальный уровень
- 1.3. Сетевой уровень
- 1.4. Транспортный уровень
- 1.5. Сеансовый уровень
- 1.6. Представительский уровень
- 1.7. Прикладной уровень
- 2. Взаимодействие между стеками протоколов
- 3. Взаимодействие между уровнями с использованием модулей pdu
- 4. Применение модели osi
- 5. Типы сетей
- 5.1. Шинная топология
- 5.2. Кольцевая топология
- 5.3. Звездообразная топология
- 5.4. Реализация шинной топологии в виде физической звезды
- 6. Методы передачи данных в локальных сетях
- 7. Глобальные сетевые коммуникации
- 7.1. Сети на основе телекоммуникационных каналов
- 7.2. Сети на основе каналов кабельного телевидения
- 7.3. Беспроводные сети
- 8. Методы передачи данных в глобальных сетях
- Заключение
- Глава 3 Методы передачи физического сигнала Часть 1. Теоретическая часть.
- Организации по сетевым стандартам
- Национальный институт стандартизации сша (ansi)
- Институт инженеров по электротехнике и электронике (ieee)
- Международная организация по стандартизации (iso)
- Общество Интернета (isoc) и Проблемная группа проектирования Интернета (ietf)
- Ассоциация электронной промышленности (eia) и Ассоциация промышленности средств связи (tia)
- Типы коммуникационной среды
- Коаксиальный кабель
- Витая пара
- Оптоволоконный кабель
- Комбинированная оптокоаксиальная кабельная система
- Высокоскоростные технологии с использованием витой пары и оптоволоконного кабеля
- Беспроводные коммуникации
- Типы интерфейсов данных
- Передача пакетов
- Передача ячеек
- Методы передачи сигналов в глобальных сетях
- Двухточечные соединения
- Часть 2. Специальная часть.
- 10 Gigabit Ethernet на витой паре.
- Технически предпосылки
- Техника передачи по меди
- Передача данных в 10gbase t
- Кабельные решения
- Витая пара категории 7.
- Соединения оптоволокна.
- Соединения оптических волокон с помощью сварки
- Соединение оптических волокон методом склеивания
- Механические соединители оптических волокон
- Доступ к беспроводным локальным сетям.
- Беспроводные сетевые технологии.
- Подключение к беспроводной локальной сети.
- Различные точки доступа.
- Утилита d-Link AirPro Multiple ap Manager - универсальный способ управления Более привычный вариант: вэб-интерфейс для управления dwl-6000ap
- Конфигурация dwl-6000ap завершена
- Окончательные настройки беспроводной сети на базе dwl-6000aр
- Параметры com-порта для консольного подключения к точке доступа
- Основное меню конфигурации lw2100ap: скромный вид, большие возможности
- Скоростные характеристики беспроводных сети Безопасность беспроводной сети
- Перспективы беспроводных сетей
- Глава 4 Сетевое передающее оборудование Введение
- Часть1 Аналитическая часть Передающее оборудование локальных сетей
- Сетевые адаптеры
- Назначение блока контроллера mac
- Режимы передачи сигналов
- Сетевые адаптеры fddi и atm
- Беспроводные сетевые адаптеры
- Сетевые адаптеры и шины
- Выбор сетевого адаптера
- Повторители
- Модули множественного доступа
- Концентраторы
- Мосты Token Ring с маршрутизацией от источника
- Алгоритм связующего дерева
- Маршрутизаторы
- Статическая и динамическая маршрутизация
- Мосты-маршрутизаторы
- Коммутаторы
- Передающее оборудование глобальных сетей
- Мультиплексоры
- Группы каналов
- Частные телефонные сети
- Телефонные модемы
- Адаптеры isdn
- Кабельные модемы
- Модемы и маршрутизаторы dsl
- Серверы доступа
- Маршрутизаторы
- Часть 2 Проектная часть
- Передающее оборудование локальных сетей Сетевые адаптеры Сетевой адаптер Cisco Aironet air-pci352
- Сетевой адаптер Cisco Aironet air-cb21ag, Wi-Fi, CardBus
- Повторители Fiber Driver: повторители
- Концентраторы Концентратор adsl-доступа Cisco 6100
- Мосты Точка доступа/ мост Cisco Aironet 350, 10/100 Eth, Wi-Fi, 802.11, 802.11a, 802.11b
- Маршрутизаторы Маршрутизатор Cisco 575
- Cisco 675 adsl маршрутизатор для малого офиса или сотрудников, работающих на дому
- Мосты – маршрутизаторы Мосты-маршрутизаторы компании Bay Networks.
- Коммутаторы Коммутатор Cisco Catalyst 2950g 12 ei
- Голосовой шлюз Cisco vg200
- Цифровой шлюз доступа - Cisco Access Digital Gateway
- Передающее оборудование глобальных сетей Мультиплексоры Многофункциональный мультиплексор Cisco мс3810
- Частные телефонные сети
- Телефонные модемы Аналоговый корпоративный модем V.Everything 56k
- Кабельные модемы
- Мосты и маршрутизаторы dsl
- Серверы доступа
- Маршрутизаторы Маршрутизатор Cisco Modular Access Router 1605
- Заключение
- Глава 5 Протоколы локальных вычислительных сетейВведение
- Часть 1 Аналитическая часть Протоколы локальных сетей
- Общие свойства протоколов локальной сети
- Протоколы ipx/spx и система Novell NetWare
- Назначение протокола spx
- Развертывание протоколов ipx/spx
- Эмуляция ipx/spx
- Привязка к драйверу ndis
- Другие протоколы, используемые вместе с серверами NetWare
- Протокол NetBeui и серверы Microsoft Windows
- История NetBeui
- Область применения NetBeui
- NetBeui и эталонная модель osi
- Почему NetBeui хорошо работает в сетях Microsoft
- Недостатки NetBeui
- Протокол AppleTalk и система Mac os
- Сравнение версий AppleTalk Phase I и AppleTalk Phase п
- Службы AppleTalk
- AppleTalk и эталонная модель osi
- Методы доступа AppleTalk
- Сетевая адресация AppleTalk
- Протоколы, входящие в стек AppleTalk
- Совместимость AppleTalk с системами Mac os X, Windows 2000 и Netware
- Протокол tcp/ip и различные серверные системы
- Протоколы и приложения, входящие в стек тср/iр
- Протокол sna и операционные системы ibm
- Стек протоколов sna и эталонная модель osi
- Достоинства и недостатки sna
- Физические элементы сети sna
- Протоколы и приложения, работающие в стеке sna
- Протокол dlc для доступа к операционным системам ibm
- Протокол dna для операционных систем компьютеров Digital (Compaq)
- Повышение производительности локальных сетей
- Проблема каналов связи
- Удаление ненужных протоколов
- Часть 2. Проектная часть
- 1. Базовая модель osi (Open System Interconnection)
- Общая характеристика протоколов локальных сетей
- Формирование сообщений протоколами
- Протоколы физического уровня
- Протоколы канального уровня
- Протоколы сетевого уровня
- Протоколы транспортного уровня
- Протоколы сеансового уровня
- Протоколы представительного уровня
- Протоколы прикладного уровня
- Семейство стандартов ieee 802.X
- Стандартные стеки коммуникационных протоколов
- Стек osi
- Стек tcp/ip
- Стек ipx/spx
- Стек NetBios/smb
- 2. Более подробное рассмотрение некоторые протоколов и стеков протоколов. Протоколы Novell (ipx/spx)
- Протокол ядра NetWare (ncp)
- Основы tcp/ip
- Модуль ip создает единую логическую сеть
- Структура связей протокольных модулей
- Терминология
- Потоки данных
- Работа с несколькими сетевыми интерфейсами
- Межсетевой протокол ip
- Прямая маршрутизация
- Косвенная маршрутизация
- Правила маршрутизации в модуле ip
- Выбор адреса
- Подсети
- Как назначать номера сетей и подсетей
- Подробности прямой маршрутизации
- Порядок прямой маршрутизации
- Подробности косвенной маршрутизации
- Порядок косвенной маршрутизации
- Протокол tcp
- Основы технологии
- Доступ к среде
- Назначения адреса протокола
- Сетевые объекты
- Протокол доставки дейтаграмм (ddp)
- Протокол поддепжки маршрутной таблицы (rtmp)
- Транспортный уровень
- Протокол транзакций AppleTalk (atp)
- Протокол потока данных AppleTalk (adsp)
- Протоколы высших уровней
- Инкапсулирующая технология Data Link Switching (dlSw) Назначение и история создания технологии
- Принципы работы протокола dlSw
- Локальное подтверждение
- Поддержка узлов, не являющихся узлами llc2
- Поддержка дейтаграммного и широковещательного трафика
- Заключение
- Глава 6 Прошлое, настоящее и будущее протокола tcp Введение
- 1. История и перспективы стека tcp/ip
- 2. Модель osi
- 3. Структура стека tcp/ip. Краткая характеристика протоколов
- 4. Протокол межсетевого взаимодействия ip
- 4.1. Адресация в ip сетях
- 4.1.1. Типы адресов
- 4.1.2. Три основных класса ip-адресов
- 4.1.3. Соглашения о специальных адресах: broadcast, multicast, loopback
- 4.1.4. Отображение физических адресов на ip-адреса: протоколы arp и rarp
- 4.1.5. Отображение символьных адресов на ip-адреса: служба dns
- 4.1.6. Автоматизация процесса назначения ip-адресов узлам сети - протокол dhcp
- 4.2. Протокол ip
- 4.2.1. Формат пакета ip
- 4.2.2. Управление фрагментацией
- 4.2.3. Маршрутизация с помощью ip адресов.
- 4.3. Развитие стека - протокол iPv6
- 4.3.1. Особенности протокола iPv6
- 4.3.2. Формат заголовка iPv6
- 4.3.3. Дополнительные заголовки
- 4.3.4. IPv6 и автоматическое конфигурирование
- 4.4. Структуризация ip сетей
- 4.4.1. Использование масок для структуризации сети
- 4.4.2. Использование масок переменной длины
- 4.4.3. Технология бесклассовой междоменной маршрутизации cidr
- 4.5. Протокол icmp
- 4.5.1. Общая характеристика протокола icmp
- 4.5.2. Формат сообщений протокола icmp
- 4.5.4. Сообщения о недостижимости узла назначения
- 4.5.5. Перенаправление маршрута
- 5. Основной уровень
- 5.1. Протокол доставки пользовательских дейтаграмм udp
- 5.1.1. Зарезервированные и доступные порты udp
- 5.1.2. Мультиплексирование и демультиплексирование прикладных протоколов с помощью протокола udp
- 5.1.3. Формат сообщений udp
- 5.2. Протокол надежной доставки сообщений tcp
- 5.2.1. Сегменты tcp
- 5.2.2. Порты и установление tcp-соединений
- 5.2.3. Концепция квитирования
- 5.2.4. Реализация скользящего окна в протоколе tcp
- 5.2.5. Выбор тайм-аута
- 5.2.6. Реакция на перегрузку сети
- 5.2.7. Формат сообщений tcp
- 6. Прикладной уровень
- 6.1. Протокол передачи файлов (File Transfer Protocol)
- 6.1.1. Описание протокола
- 6.1.2. Представление данных
- 6.1.3. Команды ftp
- 6.1.4. Ftp отклики
- 6.1.5 Управление соединением
- 6.2. Простой протокол передачи почты (Simple Mail Transfer Protocol)
- 6.2.1. Описание протокола
- 6.2.2. Пример передачи почтового сообщения
- 6.2.3. Команды smtp
- 6.2.4. Структура сообщения
- 6.2.5. Транслирующие агенты
- 6.2.6. Интервалы между ретрансляциями
- 6.2.7. Особенности кодировки smtp
- Заключение
- Глава 7: Методы передачи данных в глобальных сетях Введение:
- СетиХ.2
- Х.25 и эталонная модель osi
- Методы передачи информации в сетях х.25
- Соединения х.25
- Структура фрейма х.25
- Использование сетей х.25
- Сети с ретрансляцией кадров (frame relay)
- Многоуровневые коммуникации в сетях frame relay
- Коммутация и виртуальные каналы
- Формат фрейма
- Передача голоса по сетям с ретрансляцией кадров (VoFr)
- Службы поставщиков сетевых услуг
- Сети isdn
- Цифровые коммуникационные службы
- Широкополосные сети isdn
- Принципы работы isdn-сетей
- Isdn и многоуровневые коммуникации osi
- Формат фрейма lapd
- Протокол управления соединениями q.931
- Подключение к сети isdn через т-линию
- Служба smds
- Архитектура smds
- Особенности подключения к сетям smds
- Линии dsl
- Основные понятия dsl
- Типы служб dsl
- Сети sonet
- Топология сети sonet и обнаружение отказов
- Уровни sonet и эталонная модель osi
- Региональные Ethernet-сети (Optical Ethernet)
- Дополнительные протоколы глобальных сетей
- Глава 8 Технология atm Введение
- Введение в atm
- Характеристики сетей atm
- Многоуровневые коммуникации atm
- Физический уровень atm
- Уровень атм
- Адаптационный уровень atm (aal)
- Уровень служб и приложений atm
- Структура ячейки atm
- Принципы работы сетей atm
- Виртуальные каналы atm
- Постоянный виртуальный канал (pvc)
- Коммутируемый виртуальный канал (svc)
- Интеллектуальный постоянный виртуальный канал (spvc)
- Характеристики atm-коммуникаций
- Вопросы проектирования сетей atm
- Компоненты сетей atm
- Характеристики и типы atm-коммутаторов
- Типы atm-интерфейсов
- Области применения atm
- Применение технологии atm при построении локальных сетей
- Lane-компоненты
- Передача ip поверх atm (Classical ip over atm)
- Многопротокольные коммуникации поверх atm (Multiprotocol over atm, mpoa)
- Обеспечение высокоскоростного доступа к серверам локальной сети
- Подключение настольных систем к atm-сети
- Применение технологии atm при построении глобальных сетей
- Передача atm-ячеек по сети sonet
- Передача пакетов frame relay no atm-сети
- Передача пакетов smds по atm-сети
- Виртуальные локальные сети
- Управление локальными и глобальными atm-сетями
- Основные термины
- Глава 9 Технологии беспроводных сетей Введение
- Часть 1. Аналитическая часть
- 1.1.История беспроводных сетей
- 1.2.Преимущества беспроводных сетей
- 1.3.Технологии беспроводных сетей
- 1.3.1.Технологии радиосетей
- Беспроводные коммуникации с использованием радиоволн
- 1.3.2.Стандарт RadioEthernet ieee 802.11
- Компоненты беспроводной сети
- Направленная антенна
- Направленные антенны Всенаправленная антенна
- Методы доступа в беспроводных сетях
- Обработка ошибок передачи данных
- Скорости передачи
- Методы обеспечения безопасности
- Использование аутентификации при разрыве соединения
- Топологии сетей ieee 802.11
- Беспроводная топология ibss
- Беспроводная топология ess Многоячеечные беспроводные локальные сети
- 1.4.Сетевые технологии с использованием инфракрасного излучения
- Беспроводные коммуникации с использованием ик-излучателя
- 1.5.Микроволновые сетевые технологии
- Наземные свч коммуникация
- 1.6.Беспроводные сети на базе низкоорбитальных спутников Земли
- Глобальная сеть на основе низкоорбитальных спутников Часть 2. Практическая часть
- 2.1. Построение беспроводной сети для офиса.
- 2.2.2 Разработка стандарта.
- 2.1.3 Безопасность в эфире.
- 2.1.4 Условия и результаты тестирования адаптеров wlan.
- 2.1.5 Описание адаптеров wlan (участники тестирования).
- 2.1.6 Проблемы связанные с внедрением технологии беспроводных сетей.
- 2.2 Путь к новому поколению беспроводных лвс.
- 2.2.1 Сравнение пропускных способностей разных стандартов.
- 2.2.2 Как достичь повышения производительности беспроводных сетей нового поколения.
- 2.2.3 Повышение физической скорости передачи данных (технология mimo)
- 2.3 Выбор оборудования для беспроводной сети.
- 2.3.1 Беспроводные маршрутизаторы
- 2.3.2 Мост для беспроводных сетей
- 2.3.3 Беспроводной Cardbus-адаптер AirPlus Xtreme g высокоскоростной 2.4гГц (802.11g
- 2.3.4 Шлюз обеспечения безопасности беспроводных сетей
- 2.3.5 Антены для беспроводных сетей.
- Ant24-1201 направленная внешняя антенна типаYagi, 12 dBi
- Заключение.
- Глава 10 Совместная передача речи, видеоизображений и данных Часть 1. Теоретическая часть Технологии передачи видеоизображений
- Аналоговая передача изображений
- Цифровая передача изображений
- Фрактальное сжатие изображений
- Режимы воспроизведения видеоизображений формата mpeg
- Технологии создания аудиофайлов
- Дискретизация аудио- и видеосигналов
- Распространение аудио- и видеотехнологий
- Тенденции развития аудио- и видеотехнологий
- Передача голоса по ip-протоколу Voice over ip (VoIp)
- Стандарт itu h.323
- Определение полосы пропускания и производительности сети
- Определение времени загрузки отдельного файла
- Факторы, влияющие на полосу пропускания и пропускную способность
- Сжатие файлов и совместимость файловых форматов
- Синхронизация
- Время ожидания
- Джиттер
- Передача мультимедийной информации в локальных и глобальных сетях
- Методы пересылки информации
- Применение различных методов вещания для одного и того же приложения
- Назначение протокола igmp
- Дополнительные протоколы, обеспечивающие многоадресное вещание
- Протоколы для многоадресного потокового вещания в реальном масштабе времени
- Приложения и межсетевые устройства
- Подготовка локальных и глобальных сетей к развертыванию мультимедийных приложений
- Модернизация существующей сети для развертывания мультимедийных приложений
- Совместное использование Fast Ethernet и Gigabit Ethernet в мультимедийных локальных сетях
- Проектирование глобальных сетей, поддерживающих мультимедийные приложения
- Уменьшение стоимости глобальной сети и увеличение ее производительности
- Возможности устройств, позволяющие увеличить производительность глобальной сети
- Перспективы развития мультимедийных средств
- Часть 2 Специальная часть
- Глава 11 Базовые принципы проектирования локальных и глобальных сетей Часть 1. Теоретическая часть. Введение
- Теоретическая часть
- Общие вопросы проектирования локальных и глобальных сетей
- Факторы, влияющие на структуру локальных и глобальных сетей
- Ожидаемый сетевой трафик
- Требования по избыточности
- Перемещения пользователей
- Перспективное развитие
- Требования безопасности
- Подключение к глобальным сетям
- Стоимость сети
- Анализ существующей топологии и ресурсов
- Прокладка и замена кабеля
- Рекомендации по прокладке кабелей
- Структурированная кабельная система
- Вертикальная разводка и структурированные сети
- Применение дуплексных коммуникаций
- Особенности использования мостов, маршрутизаторов и концентраторов
- Подготовка запросов информации (rfi) и заявок на предложения (rfp)
- Принципы проектирования локальных сетей
- Поэтапная реализация плана сети
- Размещение хостов и серверов
- Мультимедийные приложения
- Структуры беспроводных локальных сетей
- Вопросы эксплуатации и поддержки
- Принципы проектирования глобальных сетей
- Беспроводные региональные и глобальные сети
- Спецификации беспроводных региональных сетей
- Спецификации беспроводных глобальных сетей
- Топологии, предоставляемые поставщиками услуг глобальных сетей
- Структура затрат
- Оборудование поставщика услуг и клиентское оборудование
- Часть 2 Специальная часть Правила объединения рабочих групп
- Правило 5-4-3
- Правила проектирования сетей стандарта 10Base-5
- Примеры применения технологии 10Base-5 Применение технологии 10Base-5 на одном коаксиальном сегменте
- Правила проектирования сетей стандарта 10Base-2
- Примеры применения технологии 10Base-2 Ethernet технологии 10Base-2 на одном коаксиальном сегменте
- Дополнительные возможности технологии 10Base-2
- Правила проектирования сетей стандарта 10Base-t
- Примеры применения технологии 10Base-t Простейший вариант применения технологии 10Base-т
- Высокоскоростные лвс
- Высокоскоростные решения для магистралей
- Высокоскоростные технологии для серверов
- Высокоскоростные технологии для рабочих станций
- Преимущества централизованных систем перед распределенными
- Поддержка сетей и общий уровень расходов
- Коммутаторы с промежуточной буферизацией и изменение скорости
- Двухскоростные адаптеры и коммутаторы с автоматическим определением скорости
- Механизм доступа к среде, соответствие задачам и масштабируемость
- Разделяемая среда без организации соединений
- Выбор технологии
- Совместимость с кабельными системами, средствами анализа и управления
- Коммутаторы Ethernet
- Коммутаторы для рабочих групп
- Магистральные коммутаторы
- Преимущества коммутаторов Ethernet
- Применение коммутаторов Объединение концентраторов 10Base-t с помощью магистрального коммутатора
- Выделенная полоса для каждого пользователя
- Рабочие группы с несколькими серверами
- Рабочие группы с архитектурой клиент-сервер
- Объединение коммутаторов рабочих групп и корпоративных серверов
- Многопротокольные маршрутизаторы Поддержка нескольких независимых сетей с помощью многопротокольных маршрутизаторов
- Мультиплексирование протоколов в конечных узлах
- Многопротокольный маршрутизатор Ascend mx-18 briu
- Маршрутизаторы компании Cisco
- Отличительные особенности серии Cisco 7000
- Простои в сети Как избежать простоев сети?
- Отказоустойчивые системы
- Системы низкоорбитальных спутников
- Большие и малые системы
- Система Teledesic
- Преобразующая роль Teledesic
- Стратегическое планирование корпоративных сетей
- Многослойное представление корпоративной сети
- Стратегические проблемы построения транспортной системы корпоративной сети
- Планирование этапов и способов внедрения новых технологий в существующие сети