5.4 Диспетчер виртуальных машин системы Microsoft Windows
После того как мы в общих чертах описали систему управления памятью, используемую в процессорах семейства IA-32, будет интересно посмотреть на то, как происходит этот процесс в операционной системе Windows. Ниже приведена выдержка из документации Microsoft Platform SDK.
«Основу ядра операционных систем Windows составляет диспетчер виртуальных машин (Virtual Machine Manager, или VMM), который является 32-разрядной программой, написанной для защищенного режима работы процессора. К его основным функциям относятся: создание, запуск, отслеживание и завершение работы виртуальных машин. Кроме того, VMM обеспечивает поддержку функций, предназначенных для распределения памяти, управления процессами, прерываниями и исключениями. Он также обеспечивает работу виртуальных устройств – 32-разрядных модулей, обрабатывающих прерывания и ошибки, генерируемые реальными устройствами, и управляющих доступом со стороны прикладных программ к оборудованию компьютера и установленного программного обеспечения.
И VMM, и модули виртуальных устройств выполняются в едином 32-разрядном линейном адресном пространстве с нулевым уровнем привилегий. Операционная система создает в таблице глобальных дескрипторов два элемента: один для сегмента кода, а другой для сегмента данных. Базовый адрес обоих сегментов равен нулю и никогда не изменяется. Диспетчер виртуальных машин обеспечивает поддержку выполнения множества потоков команд, а также многозадачность с вытеснением на основе приоритетов. Он позволяет одновременно запускать несколько приложений в отдельных виртуальных машинах и распределять время центрального процессора между ними.»
В приведенном выше отрывке из документации Microsoft Platform SDK под термином виртуальная машина понимается процесс или задача, по крайней мере, так это определено в документации по процессорам семейства IA-32 фирмы Intel. Виртуальная машина состоит из программного кода, обслуживающих ее программ, памяти и регистров. Каждой виртуальной машине назначается собственное адресное пространство, пространство портов ввода-вывода, таблица векторов прерываний и таблица локальных дескрипторов. Приложениям, которые запускаются в виртуальной машине в режиме эмуляции процессора 8086, назначается третий уровень привилегий. Программы, написанные для защищенного режима, могут выполняться с первым, вторым или третьим уровнем привилегий.
Вопросы для самопроверки
Что представляет собой страница при страничной организации памяти?
Сколько элементов содержит каталог страниц?
Какова структура элемента каталога страниц?
Почему адреса таблиц страниц выровнены на 4 Кб?
Какую роль играет бит PS поля доступа элемента каталога страниц?
Какую роль играет бит RW поля доступа элемента каталога страниц?
Чем отличается каталог страниц от таблицы страниц?
В каком режиме работы микропроцессора доступна линейная адресация памяти?
Каков размер страницы при страничной организации памяти и от чего он зависит?
Из каких частей состоит линейный адрес?
По какому алгоритму происходит преобразование линейного адреса в физический адрес?
Какова роль ассоциативного буфера истории трансляции в преобразовании виртуального адреса в физический адрес?
- Предисловие
- Глава 1. Общие сведения о микропроцессорах
- 1.1 Классификация микропроцессоров
- 1.2 Характеристики микропроцессоров
- 1.2.1 Тактовая частота
- 1.2.2 Архитектура процессора
- 1.2.3 Технологический процесс производства
- 1.2.4 Частота системной шины
- 1.2.5 Размер кэша
- 1.3 Типы архитектур микропроцессоров
- 1.4 Структурная схема микропроцессоров
- 1.4.1 Микропроцессор Фон-Неймана
- 1.4.2 Конвейер
- 1.4.3 Зависимость между частотой и количеством ступеней конвейера
- 1.5 Представление информации в эвм
- 1.5.1 Двоичное представление целых чисел
- 1.5.2 Представление символьной информации
- Глава 2. Архитектура микропроцессоров ia-32
- 2.1 Состав и функции регистров
- 2.1.1 Основные регистры
- 2.1.2 Регистры дополнительных функциональных модулей
- 2.2 Типы адресации
- 2.3 Система команд
- 2.3.1 Классификация команд
- 2.3.2 Формат команды
- 2.3.3 Однобайтовые команды
- 2.3.4 Непосредственно заданные операнды
- 2.3.5 Команды с регистровыми операндами
- 2.3.7 Команды с операндами, расположенными в памяти
- Глава 3. Организация многоуровневой памяти
- 3.1 Принцип построения многоуровневой памяти
- 3.2 Организация кэш-памяти
- 3.3 Протоколы когерентности памяти микропроцессоров
- 3.4 Страничная организация памяти
- Глава 4. Режимы работы процессоров ia-32
- 4.1 Обзор режимов работы
- 4.2 Реальный режим адресации
- 4.3 Защищённый режим
- 4.3.1 Дескрипторные таблицы
- 4.3.2 Дескрипторные регистры
- 4.3.3 Дескриптор
- 4.3.4 Односегментная модель памяти
- 4.3.5 Многосегментная модель памяти
- Глава 5. Страничная организация памяти в процессорах ia‑32
- 5.1 Каталог страниц
- 5.2 Таблица страниц
- 5.3 Страничная переадресация
- 5.4 Диспетчер виртуальных машин системы Microsoft Windows
- Глава 6. Архитектура процессоров с параллелизмом уровня команд
- 6.1 Подходы к использованию ресурса транзисторов в микропроцессорах
- 6.2 Суперскалярные процессоры и процессоры с длинным командным словом
- 6.3 Зависимости между командами, препятствующие их параллельному исполнению
- 6.4 Предварительная выборка команд и предсказание переходов
- 6.5 Условное выполнение команд в vliw-процессорах
- 6.6 Декодирование команд, переименование ресурсов и диспетчеризация
- 6.7 Исполнение команд
- 6.8 Завершение выполнения команды
- 6.9 Направления развития архитектуры процессоров с параллелизмом уровня команд
- Глава 7. Мультитредовые микропроцессоры
- 7.1 Основы мультитредовой архитектуры
- 7.2 Выявление тредов
- 7.3 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления программы
- 7.3.1 Мультитредовая модель выполнения программы
- 7.3.2 Мультитредовые программы
- 7.3.3 Аппаратные средства мультитредовой архитектуры
- 7.3.4 Преимущества мультитредовой архитектуры
- 7.4 Мультитредовые процессоры с тредами, выявляемыми путем анализа потоков данных программы
- 7.5 Специфика мультитредовых моделей распараллеливания
- Глава 8. Модуль обработки вещественных чисел
- 8.1 Представление чисел с плавающей запятой
- 8.2 Состав модуля fpu
- Глава 9. Основы 64-разрядной архитектуры
- 9.1 Состав и назначение регистров микропроцессора ia-64
- 9.2 Особенности архитектуры epic
- 9.3 Архитектура x86-64
- 9.4 Структура одноядерного процессора
- 9.5 Многоядерные процессоры
- 9.6 Зачем нужны “лишние” разряды?
- Глава 10. Современные 64-разрядные микропроцессоры корпораций Intel и amd
- 10.1 Архитектура Intel Core 2
- 10.1.1 Intel Wide Dynamic Execution
- 10.1.2 Intel Intelligent Power Capability
- 10.1.3 Intel Advanced Smart Cache
- 10.1.4 Intel Smart Memory Access
- 10.1.5 Intel Advanced Digital Media Boost
- 10.1.6 Логическая схема процессора
- 10.2 Архитектура Intel Core i7
- 10.2.1 Технология Hyper-Threading в архитектуре Nehalem
- 10.2.2 Иерархия кэш-памяти в архитектуре Nehalem
- 10.3 Хронология развития семейств микропроцессоров с архитектурой Nehalem
- 10.4 Архитектура amd Athlon 64
- 10.4.1 Ядро процессора
- 10.4.3 Контроллер памяти
- 10.4.4 Контроллер HyperTransport
- 10.5 Архитектура amd k10
- 10.4.1 Технология amd Memory Optimizer Technology
- 10.5.2 Ядро процессора
- 10.5.3 Предвыборка данных и инструкций
- 10.5.4 Выборка из кэша
- 10.5.5 Предсказание переходов и ветвлений
- 10.5.6 Процесс декодирования
- 10.5.7 Диспетчеризация и переупорядочение микроопераций
- 10.5.8 Выполнение микроопераций
- 10.5.9 Технологии энергосбережения
- 10.5.10 Шина HyperTransport 3.0
- 10.5.11 Семейство процессоров Barcelona
- 10.5.12 Семейство процессоров Phenom
- Глава 11. Технологии, поддерживаемые современными микропроцессорами
- 11.1 Технологии тепловой защиты
- 11.1.1 Технология Thermal Monitor
- 11.1.2 Технология Thermal Monitor 2
- 11.1.3 Режим аварийного отключения
- 11.2 Технологии энергосбережения
- 11.2.1 Технология Enhanced Intel SpeedStep
- 11.2.2 Технология Cool'n'Quiet
- 11.3 Технология расширенной памяти
- 11.4 Технология антивирусной защиты
- 11.5 Технология виртуализации
- 11.6 Реализация технологий в современных микроархитектурах
- 11.6.2 Em64t – NetBurst
- 11.6.3 Intel Core
- 11.6.4 Intel Atom
- 11.6.5 Nehalem
- 11.6.6 Xeon
- Глава 12. Графические микропроцессоры
- 12.1 Основные термины и определения
- 12.2 Технологии построения трёхмерного изображения
- 12.2.1 Технологии повышения реалистичности трехмерного изображения
- 12.3 Шейдерный процессор
- 12.4 Особенности современных графических процессоров
- Глава 13. Однокристальные микроконтроллеры
- 13.1 Общая характеристика микроконтроллеров
- 13.2 Микроконтроллеры семейства avr
- Почему именно avr?
- 13.3 Общие сведения об омк avr
- 13.4 Характеристики avr-микроконтроллеров
- Глава 14. Технология производства микропроцессоров
- 14.1 Особенности производства процессоров
- 14.2 Новые технологические решения
- 14.3 Технология производства сверхбольших интегральных схем
- I. Выращивание кристалла кремния
- II. Создание проводящих областей
- III. Тестирование
- IV. Изготовление корпуса
- V. Доставка
- 14.4 Перспективы производства сбис
- Англо-русский словарь терминов и аббревиатур
- Библиографический список
- Интернет-ссылки
- 350072. Краснодар, ул. Московская, 2, кор. А.