2.1.3 Унификация встраиваемых компьютеров
О стандартах для промышленного оборудования можно говорить в следующих аспектах:
- соблюдение некоторых требований по надежности и безопасности при их применении;
- некоторая договоренность независимых производителей о единообразии конструкции изделия, отдельных ее частей с целью улучшения взаимозаменяемости этих изделий или их совместимости в одной системе управления;
- некоторая договоренности всего сообщества (производителей, проектировщиков и эксплуатационников) о терминах, названиях отдельных частей и изделий, о классификации изделий, компонентов, опций.
Именно о таком понимании стандартов для встраиваемых компьютеров давно нужно говорить. И вот почему.
Консолидация на рынке оргтехники – электроники для офиса давно позволила сегментировать этот рынок. Хорошо известно, что можно считать сервером, рабочей станцией, тонким клиентом, домашним принтером или принтером для малых групп и т. д. Конечно, и практика применения оргтехники достаточно однообразна. Тем не менее дистрибуторам промышленных и встраиваемых компьютеров очень мешает отсутствие стройной классификации оборудования. Уровень классификации сейчас таков, что существует 3…4 основные категории: панельные компьютеры, 19” стоечные и компактные (встраиваемые, но без монитора). Внутри этих категорий отсутствует строгая систематизация. Так, если заказчик слабо знаком с номенклатурой встраиваемых систем, ему будет крайне тяжело выбрать подходящее изделие. Еще тяжелее сравнивать изделия разных производителей, вычислять так популярные в офисных системах показатели: цена-качество, стоимость владения, масштабируемость, рассчитывать эксплуатационные бюджеты.
Тяжело и продавцу при создании, например, Internet-магазина. Есть, безусловно, легкий путь – разбить все по вендорам, для каждого - свой «фрагментик». А там уже как сам производитель понимает структуру своей продукции, так и поставим. Вот и получается, что один производитель считает важным продвижение безвентиляторных систем. Тогда он выделяет отдельный класс под такие изделия и сваливает туда и панельные и компактные компьютеры, да еще твердотельные диски и «системы на модуле», и процессорные платы. Другой производитель продвигает компьютеры для широкого диапазона температур, третий высокопроизводительные и энергоэкономичные. Многочисленность и раздробленность производителей не позволяет прийти к единому пониманию о структуре промышленных компьютеров. Более того, невозможно даже провести подходящую для всех границу между промышленными и офисными (домашними) компьютерами, с одной стороны, и компьютерами и контроллерами, с другой.
Но страдает не только заказчик, страдает и продавец. «Многообразие видов» заставляет дистрибутора поддерживать отношения с множеством производителей, а это и резервы под гарантийные случаи и для ускоренной поставки, инженеры технической поддержки, сложная логистика, длительные сроки поставки, необходимость заказа на производство даже для небольших партий (100 ед. – мизер для рынка офисных систем). Это, наконец, высокие цены. И отнюдь не из-за того, что необходимо обеспечить большую надежность, а из-за малых тиражей и высоких (на единицу товара) накладных расходов.
Можно ли преодолеть этот разнобой техники? Со стороны производителей – вряд ли. Их слишком много. Так, например, IPC2U закупает встраиваемые компьютеры более чем у 10 компаний. Все производители встраиваемых систем более-менее равны по силам, явного лидера, который смог бы навязать свои стандарты, свою классификацию и сегментацию, нет. Другое дело – дистрибуторы. Плохо это или хорошо, но в России не так много компаний, занимающихся исключительно дистрибуцией встраиваемых компьютеров. Крупных – общероссийских, для которых дистрибуция – основной вид деятельности (а не способ снизить издержки системной интеграции), 5..6 игроков. Информационных Web-ресурсов, где приведена классификация не с точки зрения производителя, а с позиции удобства потребителя, еще меньше. Любая классификация условна и имеет недостатки. Вполне вероятно, что ныне применяемая иерархическая классификация вообще невозможна для подобного оборудования. (Такая классификация, по-моему, работает только в мире живой природы). Свои потребности клиент может формулировать по-разному, отсюда и надо идти продавцу, предлагая различные варианты сортировки одного и того же оборудования.
Вот основные варианты представления данных об оборудовании, основанные на опыте общения с клиентами. Идеальный Web-ресурс должен давать классификацию множеством способов, например по:
· габаритам (размер, вес, диагональ экрана) или форм-фактору;
· мощности и типу процессора (а также другим количественным параметрам – оперативной памяти, объему накопителя);
· предельным условиям применения (температура, влажность, вибрация);
· возможностям расширения и установки дополнительной периферии;
· наличию основных промышленных интерфейсов;
· возможностям установки программного обеспечения.
Наличие хорошего примера - работающего Web-ресурса наверняка приведет через подражание к единообразию, в конечном итоге облегчит жизнь и продавцам, и покупателям. Единообразие в представлении данных облегчит конкуренцию, сделает ее прозрачнее. Вот так мир виртуальный воздействует на мир реальный.
Тем не менее, не только автора мучает еще один вопрос. Можно ли преодолеть это запредельное многообразие встраиваемых систем? Повысить унификацию отдельных компонент, универсальность в применении встраиваемых систем? Чисто технически вполне возможно сократить номенклатуру в разы. Многие изделия различных производителей зачастую отличаются только расцветкой или компоновкой разъемов, что и понятно – есть только три производителя процессоров, а сам стандарт PC-совместимости производителями встраиваемых систем принят. Более того, отдельные интерфейсные платы (например, платы дискретных входов, аналоговых входов/выходов и т.п.) иногда совпадают вплоть до компоновки. В области ПО для внешних модулей стандартом стали DCON утилиты, для внутренних - LabView и Delphi, не говоря уже о поддержке DOS, семейства Windows и Linux. Современная элементная база уже сейчас позволяет создать универсальный одноплатный компьютер. Мощный и экономичный процессор Intel Pentium M (или C2D) или VIA C4 или AMD LX, память 1Гбайт, разъем под флеш диск (доступны до 16Гбайт), отсек для 2,5” HDD (доступны до 300Гбайт), два порта гигабит Ethernet, четыре Сom порта, четыре USB, слот PCI или (по габаритам mini PCI). Все это можно реализовать даже в 3” форм-факторе. Такой одноплатный компьютер закроет до 90% заказов. Розничная цена процессорной платы не превысит 7 тыс. руб. (без памяти и накопителей). Высокий тираж снизит и цену, и прочие издержки. А при массовом выпуске появится возможность оснащать миниатюрными компьютерами рабочие места в офисах. Монтаж одноплатного компьютера сзади на мониторе в силу лишь одной «изящности» вытеснит из под столов «динозавров» - минитауэры.
В мире же промышленной автоматики дело «за малым». Осталось уговорить производителей и потребителей. Первым надо или договариваться, или укрупняться, вторым – менять проекты. И еще неизвестно, что сложнее. Ведь и сейчас в линейке большинства производителей есть изделия не хуже. Потребители с удовольствием покупали бы только их, но важнейшее требование, которое предъявляется к компьютеру (да и к любому другому оборудованию) - соответствие проекту. Эти требования, может быть, много лет тому назад заложил в проект автоматизации конструктор, потратил годы на согласования, и теперь в этом проекте можно применять только такой компьютер, только такую процессорную плату.
Порядок утверждения технических регламентов и проектов не является темой статьи. Понятно, что нужно сразу закладывать в проект самое новое, совершенное оборудование, чтобы гарантировать его наличие и через несколько лет. Можно привести много примеров, когда клиенты готовы платить любые деньги, лишь бы получить изделия в точности такие, как и 10 лет назад.
Дальнейшая миниатюризация встраиваемых систем упирается в размеры основных разъемов (DB9, USB, PS/2, IDC). Давно назрела необходимость установки универсального и миниатюрного разъема на процессорной плате с выносом всех необходимых внешних разъемов через гибкий шлейф (в ноутбуках подобная вещица носит название «порт-бар»). Это существенно облегчит «корпусирование» «одноплатников».
И напоследок несколько замечаний по поводу 19” компьютеров. Хотя они и не относятся к классу встраиваемых, но по характеру применения близки – также решают задачи промышленной автоматизации. Если «офисные» 19” решения – это разного рода серверы, то в промышленной автоматике 19” компьютеры являются «носителями» плат расширения (ISA, PCI, реже PCI-E и PCI-X). Опять же возникает вопрос унификации. Набор из двух-трех вариантов 2,4 юнита высотой на 7/14 свободных PCI слота с процессором Intel C2D, памятью 2Гб закроют до 90% всех потребностей в «стоечных» компьютерах. Остальные 10% - это компьютеры со слотами ISA или мощные хранилища данных на основе недорогих SATA массивов. Наладить выпуск 19” платформ – посильная задача для любого производителя, осуществляющего сборку в крупных масштабах. При этом поставщику промышленных компьютеров останется лишь дооснастить платформу дисками и специальными платами расширения, потребитель получит более высокую надежность и лучшую цену. Однако производители офисной техники не торопятся осваивать новый сегмент, для них масштабы подобного производства слишком малы.
Обзор тенденций стандартизации и унификации для промышленных и встраиваемых компьютеров позволяет сделать следующие выводы:
· эти процессы идут во благо, особенно конечному потребителю и проектировщику;
· процессы идут крайне медленно в силу консерватизма потребителей и невысокой концентрации производства, в силу все еще невысоких потребностей экономики в промышленных компьютерах, малых тиражей выпуска оборудования;
· расширение производства встраиваемых и 19” систем неизбежно приведет на этот рынок крупных игроков – производителей ПК, и резко ускорит стандартизацию и унификацию;
· элементная база PC-совместимых систем позволяет создавать достаточно универсальные и компактные компьютеры;
· развитие Web-ресурсов и появление общепринятой и многокритериальной классификации оборудования упростит выбор компьютеров и периферии для пользователей и проектировщиков, послужит ускорителем для стандартизации терминологии и унификации конструкции, ускорит «естественный отбор» лучших моделей, производителей и дистрибуторов.
- Учебно-методическое и информационное обеспечение дисциплины. Основная литература
- Дополнительная литература
- Курс лекций по дисциплине «Технические средства предприятий сервиса»
- Раздел 1
- 1.1 Понятия информационного сервиса, информационной услуги. Основные виды информационных услуг.
- 1.2 Основные бизнес-направления предприятий сервиса. Технические средства, применяемые на предприятиях информационного сервиса
- 9) Проектирование скс;
- 10) Строительство, монтаж и сервисное обслуживание скс;
- 12) Обслуживание парка tv-оборудования, а также систем: Охранного tv; Охранно-Пожарных систем; Контроля и управления доступом; Электропитания.
- 13) Интернет-провайдеры,
- 1.3 Общая характеристика технических средств информационных технологий
- Раздел 2
- 2.1 Унификация и стандартизация технических средств предприятий сервиса
- 2.1.1 Унификация конструкций изделий
- 2.1.2 Стандартизация компьютерной техники
- 2.1.3 Унификация встраиваемых компьютеров
- 2.3 Общее измерительное оборудование предприятий сервиса
- 2.3.1 Измерение электрических параметров. Оценка погрешностей измерений
- Основные функциональные устройства измерительной цепи
- 2.3.2 Аналоговые и цифровые средства измерений. Приборы для измерения электрических параметров
- 2.3.3 Цифровые мультиметры
- 2.3.4 Осциллографы
- 2.3.5 Приборы для измерения температуры. Датчики температур
- Термометры сопротивления
- Термисторы
- Волоконно-оптические датчики температуры
- Кварцевые датчики температуры
- Интегральные датчики температуры (ic temperature sensors)
- Радиационные термометры
- Два основных метода пирометрии
- Спектр электромагнитного излучения
- Монохроматические яркостные пирометры
- Оптическое разрешение
- Излучательная способность (коэффициент излучения)
- Классификация тепловизоров и получение ими изображения
- 2.4 Паяльное оборудование предприятий сервиса
- 2.5 Источники питания, применяемые на предприятиях сервиса
- 2.5.1. Источники питания: общие сведения
- Блок питания пк
- Основные характеристики блоков питания пк Расположение блока питания
- Мощность блока питания
- Внутреннее устройство блока питания
- Качество блока питания
- 2.8 Технические средства тестирования кабельных систем Тестирование кабеля
- Определение исправности
- Измерение характеристик
- Сертификация линии связи
- Кабельный анализатор Fluke Networks dtx-1800
- 2.9 Оборудование и технические средства, необходимые для построения и эксплуатации волс
- Преимущества волс
- Технические средства для монтажа, эксплуатации и ремонта волоконно-оптических линий связи
- Муфты оптические Муфты оптические городские типа мог-м
- Магистральные муфты типа мток с встроенными контактными элементами для сращивания и изолирования брони кабеля
- Классификация магистральных муфт типа мток
- Универсальные оптические муфты типа мток
- Соединительные изделия и кабельные сборки
- Оптические вилки и полувилки
- Оптические кроссы
- Шкафы и стойки телекоммуникационные
- Измерительно-монтажная техника и инструмент для волс
- Сварка оптоволокна
- Установка волокон в сварочный аппарат
- Оптические рефлектометры. Основные характеристики и принципы работы.
- Определение потерь в оптическом волокне
- Другие виды тестирования волокна
- Оптический рефлектометр
- 1.5. Способы применения оптических рефлектометров
- Принцип работы оптического рефлектометра
- Релеевское рассеяние
- Френелевское отражение
- Сопоставление уровня обратного рассеяния с потерями при передаче
- Блок-схема оптического рефлектометра
- Лазерный источник света
- Разветвитель
- Блок оптического измерителя
- Блок контроллера
- Блок дисплея
- 1. Динамический диапазон
- 2. Мертвая зона
- 3. Разрешающая способность
- 4. Точность измерения потерь
- 5. Точность измерения расстояния
- 6. Показатель преломления
- 7. Длина волны
- 8. Тип разъема
- 9. Подключение внешних устройств
- Раздел 3
- 3.1 Надежность технических средств, машин и оборудования сервиса
- 3.1.1 Основные характеристики тс. Понятие надежности тс
- 3.1.2 Повреждения и отказы. Классификация отказов. Свойства тс
- 3.1.3 Этапы анализа и показатели надежности тс
- 3.2 Автоматизация технологических процессов. Анализ и синтез механизмов.
- 3.3 Системы контроля и управления доступом Определение скд
- Принцип работы системы контроля доступа
- Организация скуд
- 3.4 Системы видеонаблюдения
- 3.4.1 Системы безопасности cctv
- Системы безопасности cctv: видеть все, знать все
- Соединение в систему
- Организация ip сетей
- Пользовательские требования
- Новые горизонты
- 3.4.2 Цифровые технологии в cctv
- Традиционные системы видеонаблюдения
- Возможности современных ксвн
- Реалии жизни
- Специализированное по