Термисторы
Термисторы - это по сути термометры сопротивления, выполненные на основе смешанных оксидов переходных металлов. Два основные типа термисторов – NTC (с отрицательным температурным коэффициентом сопротивления) и PTC ( с положительным коэффициентом). Наиболее распространенный тип – NTC. РТС термисторы используются только в очень узких диапазонах температур, в несколько градусов, в основном в системах сигнализации и контроля.
Конструкция и материалы
Большим преимуществом термисторов является разнообразие форм и миниатюрность. Основные конструктивные типы: бусинковые (0,1-1 мм), дисковые (2,5-18 мм), целиндрические (3-40 мм), пленочное покрытие (толщина 0,2-1 мм). Выпускаются бусинковые термисторы диаметром до 0,07 мм с выводами толщиной 0,01 мм. Такие миниатюрные датчики позволяют измерять температуру внутри кровеносных сосудов или растительных клеток.
Большинство термисторов – керамические полупроводники, изготовленные из гранулированных оксидов и нитридов металлов путем формирования сложной многофазной структуры с последующим спеканием (синтерация) на воздухе при 1100-1300 °С. Сложные двойные и тройные структуры оксидов переходных металлов, такие как (AB)3O4, (ABC)3O4 лежат в основе термисторов. Распространенной формулой является (Ni0.2Mn0.8)3O4. Наиболее стабильными термисторами при температурах ниже 250 °С являются термисторы на основе смешанных оксидов мания и никеля или магния, никеля и кобальта, имеющие отрицательный ТКС. Удельная проводимость термистора (25 °C) зависит от химического состава и степени окисления. Дополнительное управление проводимостью осуществляется добавлением очень малых концентраций таких металлов как Li и Na.
При изготовлении бусинковых термисторов бусинки наносятся на две параллельные платиновые проволоки при температуре 1100 °С, проволоки разрезаются на куски для получения необходимой конфигурации выводов. На бусинки наносится стеклянное покрытие, спекаемое при 300 °С, либо бусинки герметизируются внутри миниатюрных стеклянных трубок. Для получения металлических контактов в дисковых термисторах, на диск наносится металлическое покрытие Pt-Pd-Ag и выводные проводники соединяются с покрытием пайкой или прессованием.
Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм. Поэтому может применяться двухпроводная схема включения. Зависимость сопротивления термистора от температуры. Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой R(T) = A exp(b/T), где A, b – постоянные, зависящие от свойств материала и геометрических размеров.
Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта
1/T = a+b(lnR)+c(lnR)3,
где T – температура в К;R – сопротивление в Ом; a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 °С.
Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 °С близкие к следующим значениям:
a = 1,03 10-3
b = 2,93 10-4
c = 1,57 10-7
Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 °С в диапазоне от 0 до 70 °С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.
Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром. В диапазоне от 0 до 100 °С сличение проводится в точках с интервалом 20 °С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:
1/T = a+b(lnR)+c(lnR)2 + d(lnR)3
Могут также использоваться реперные точки: тройная точка воды (0,01 °С), точка плавления галлия (29,7646 °С), точки фазовых переходов эвтектик и органических материалов.
Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток. При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК).
Стабильность. Причины нестабильности термисторов следующие:
- напряжения, возникающие в материале при термоциклировании и образование микротрещин;
- структурные изменения в полупроводнике;
- внешнее загрязнение (водой и др. веществами) и в результате химические реакции в порах и на поверхности полупроводника;
- нарушение адгезии металлической пленки;
- миграция примесей из металлических контактов в материал термистора.
Для получения стабильного состояния термисторы подвергают старению (до 500-700 дней). Как правило, во время старения наблюдается рост сопротивления. При длительном использовании термисторов, они уходят за пределы допуска, в большинстве случаев, термисторный термометр показывает температуру несколько ниже, чем значение, определенное по номинальной характеристике.
Исследования показывают, что бусинковые термисторы могут проявлять очень высокую стабильность (дрейф до 3 мК за 100 дней при 60 °С). Дисковые термисторы менее стабильны (дрейф до 50 мК за 100 дней при 60 °С).
Термисторы представляют особый интерес для измерения низких температур благодаря своей относительной нечувствительности к магнитным полям. Некоторые типы термисторов могут применяться до температуры минус 100 °С.
Диапазон наилучшей стабильности термисторов – от 0 до 100 °С. Основными преимуществами термисторов являются вибропрочность, малый размер, малая инерционность и невысокая цена.
- Учебно-методическое и информационное обеспечение дисциплины. Основная литература
- Дополнительная литература
- Курс лекций по дисциплине «Технические средства предприятий сервиса»
- Раздел 1
- 1.1 Понятия информационного сервиса, информационной услуги. Основные виды информационных услуг.
- 1.2 Основные бизнес-направления предприятий сервиса. Технические средства, применяемые на предприятиях информационного сервиса
- 9) Проектирование скс;
- 10) Строительство, монтаж и сервисное обслуживание скс;
- 12) Обслуживание парка tv-оборудования, а также систем: Охранного tv; Охранно-Пожарных систем; Контроля и управления доступом; Электропитания.
- 13) Интернет-провайдеры,
- 1.3 Общая характеристика технических средств информационных технологий
- Раздел 2
- 2.1 Унификация и стандартизация технических средств предприятий сервиса
- 2.1.1 Унификация конструкций изделий
- 2.1.2 Стандартизация компьютерной техники
- 2.1.3 Унификация встраиваемых компьютеров
- 2.3 Общее измерительное оборудование предприятий сервиса
- 2.3.1 Измерение электрических параметров. Оценка погрешностей измерений
- Основные функциональные устройства измерительной цепи
- 2.3.2 Аналоговые и цифровые средства измерений. Приборы для измерения электрических параметров
- 2.3.3 Цифровые мультиметры
- 2.3.4 Осциллографы
- 2.3.5 Приборы для измерения температуры. Датчики температур
- Термометры сопротивления
- Термисторы
- Волоконно-оптические датчики температуры
- Кварцевые датчики температуры
- Интегральные датчики температуры (ic temperature sensors)
- Радиационные термометры
- Два основных метода пирометрии
- Спектр электромагнитного излучения
- Монохроматические яркостные пирометры
- Оптическое разрешение
- Излучательная способность (коэффициент излучения)
- Классификация тепловизоров и получение ими изображения
- 2.4 Паяльное оборудование предприятий сервиса
- 2.5 Источники питания, применяемые на предприятиях сервиса
- 2.5.1. Источники питания: общие сведения
- Блок питания пк
- Основные характеристики блоков питания пк Расположение блока питания
- Мощность блока питания
- Внутреннее устройство блока питания
- Качество блока питания
- 2.8 Технические средства тестирования кабельных систем Тестирование кабеля
- Определение исправности
- Измерение характеристик
- Сертификация линии связи
- Кабельный анализатор Fluke Networks dtx-1800
- 2.9 Оборудование и технические средства, необходимые для построения и эксплуатации волс
- Преимущества волс
- Технические средства для монтажа, эксплуатации и ремонта волоконно-оптических линий связи
- Муфты оптические Муфты оптические городские типа мог-м
- Магистральные муфты типа мток с встроенными контактными элементами для сращивания и изолирования брони кабеля
- Классификация магистральных муфт типа мток
- Универсальные оптические муфты типа мток
- Соединительные изделия и кабельные сборки
- Оптические вилки и полувилки
- Оптические кроссы
- Шкафы и стойки телекоммуникационные
- Измерительно-монтажная техника и инструмент для волс
- Сварка оптоволокна
- Установка волокон в сварочный аппарат
- Оптические рефлектометры. Основные характеристики и принципы работы.
- Определение потерь в оптическом волокне
- Другие виды тестирования волокна
- Оптический рефлектометр
- 1.5. Способы применения оптических рефлектометров
- Принцип работы оптического рефлектометра
- Релеевское рассеяние
- Френелевское отражение
- Сопоставление уровня обратного рассеяния с потерями при передаче
- Блок-схема оптического рефлектометра
- Лазерный источник света
- Разветвитель
- Блок оптического измерителя
- Блок контроллера
- Блок дисплея
- 1. Динамический диапазон
- 2. Мертвая зона
- 3. Разрешающая способность
- 4. Точность измерения потерь
- 5. Точность измерения расстояния
- 6. Показатель преломления
- 7. Длина волны
- 8. Тип разъема
- 9. Подключение внешних устройств
- Раздел 3
- 3.1 Надежность технических средств, машин и оборудования сервиса
- 3.1.1 Основные характеристики тс. Понятие надежности тс
- 3.1.2 Повреждения и отказы. Классификация отказов. Свойства тс
- 3.1.3 Этапы анализа и показатели надежности тс
- 3.2 Автоматизация технологических процессов. Анализ и синтез механизмов.
- 3.3 Системы контроля и управления доступом Определение скд
- Принцип работы системы контроля доступа
- Организация скуд
- 3.4 Системы видеонаблюдения
- 3.4.1 Системы безопасности cctv
- Системы безопасности cctv: видеть все, знать все
- Соединение в систему
- Организация ip сетей
- Пользовательские требования
- Новые горизонты
- 3.4.2 Цифровые технологии в cctv
- Традиционные системы видеонаблюдения
- Возможности современных ксвн
- Реалии жизни
- Специализированное по