logo
Лекции_ТСПС_2013студентам

Излучательная способность (коэффициент излучения)

Коэффициент излучения (называемый иногда «степень черноты») характеризует способность поверхности тела излучать инфракрасную энергию. Этот коэффициент определяется как отношение энергии, излучаемой конкретной поверхностью при определенной температуре к энергии излучения абсолютно черного тела при той же температуре. Он может принимать значения от очень малых, ниже 0,1 до близких к 1.

Спектральный диапазон пирометра. Эффективная длина волны

На практике, большинство приемников излучения имеет существенно широкий диапазон волн и даже использование фильтров не достаточно ограничивает диапазон волн, чтобы можно было считать его строго монохроматическим. Однако кривая энергии в зависимости от длины волны очень крутая при короткой длине волны, и показания пирометров четко согласуются в значительном температурном диапазоне с расчетами Планка, соответствующими длине волны близкой к “отсечной” верхней длине волны системы приемник-фильтр. Понятие эффективной длины волны является весьма удобным для оценки скорости изменения энергии (и следовательно показаний пирометра) с изменением температуры, а также погрешности, возникающей от ошибки в определении коэффициента излучения поверхности.

В МЭК 62942 дано следующее определение спектрального диапазона и эффективной длины волны пирометра:

Спектральный диапазон приводится в мкм или нм. Спектральный диапазон определяется как нижний и верхний предел длины волны при достижении спектральной чувствительности 50 % от пика чувствительности. Может также приводится основная (эффективная) длина волны и полная ширина полосы пропускания, в которой чувствительность достигает 50 % от пика чувствительности (полная ширина на половине максимума (FWHM)). Общепринято для монохроматичеких пирометров приводить эффективную длину волны в спектральном диапазоне и полную ширину на половине максимума (FWHM), а для широкополосных пирометров приводить верхний и нижний предел.

Пирометры спектрального отношения

Пирометры спектрального отношения определяют температуру объекта по отношению сигналов от двух приемников, работающих на разных длинах волн. Такой принцип измерения температуры позволяет избавиться от большинства недостатков, свойственных яркостным пирометрам. Зависимость сигнала от расстояния одинакова для обоих приемников пирометра спектрального отношения, поэтому на отношение сигналов она не влияет. Форма измеряемого объекта, запыленность и загазованность промежуточной среды одинаково влияют на сигналы с обоих приемников, оставляя неизменным их отношение.

Пирометры спектрального отношения нечувствительны к боковым засветкам от крупноразмерных объектов, наличию небольших непрозрачных объектов в поле зрения пирометра, к наличию защитных стекол, например стекол смотровых окон в вакуумных камерах. Отношение сигналов по-прежнему остается неизменным. Да и отличие значения коэффициента излучения?измеряемого объекта от 1 чаще всего приводит к одинаковому уменьшению сигналов с обоих приемников. Поэтому отношение сигналов слабо зависит от излучательной способности объекта.

Необходимо отметить два основных недостатка пирометров спектрального отношения. Во-первых, пирометр спектрального отношения сложнее радиационного, априори состоит из большего числа элементов, труднее калибруется. Поэтому стоимость таких пирометров больше, чем монохроматические. Во-вторых, излучательная способность измеряемого объекта все же? влияет на результаты измерений. Точнее, результат измерения пирометра спектрального отношения зависит не столько от величины излучательной способности или от ее изменения от объекта к объекту, сколько от спектральной зависимости коэффициента излучения от длины волны. С ростом длины волны спектральная излучательная способность снижается. Это приводит к тому, что сигнал длинноволнового приемника пирометра спектрального отношения оказывается заниженным по сравнению с коротковолновым. По этой причине показания пирометра спектрального отношения оказываются завышенными нередко более чем на 10%.

В некоторых современных пирометрах спектрального отношения применяется специальная техника автоматической коррекции влияния изменения коэффициента излучения от длины волны. Для ряда материалов, в том числе высоколегированных сталей, была исследована зависимость коэффициента излучения от длины волны и подобрана универсальная корректирующая кривая, подходящая как для чистого железа и высоколегированных сталей, так и для ряда других металлов (никель, кобальт и т.п.). При этом для большинства этих металлов коррекция возможна до уровня, при котором погрешность измерений в диапазоне температур от 600 до 2400°С составляет всего 1–1,5% (для кобальта –до 2%). Указанный способ коррекции не только сохраняет все преимущества, которыми обладают пирометры спектрального отношения, но и избавляет пользователя от необходимости вводить в прибор корректирующий коэффициент, значение которого ему неизвестно, и заменяет механическую подстройку. Поэтому измерения температуры многих металлов выполняются без роста погрешности во всем диапазоне измеряемых температур.

Тепловизоры

Тепловизор - это оптико-электронная система, предназначенная для получения видимого изображения объектов, испускающих невидимое тепловое (инфракрасное) излучение.

Первые тепловизоры созданы в 30-х гг. 20 в. Принцип действия тепловизора основан на преобразовании инфракрасного излучения в электрический сигнал, который усиливается и воспроизводится на экране индикатора.

В 70-х гг. созданы тепловизоры, в которых тепловое изображение переводится в видимое непосредственно на экране, покрытом светочувствительным веществом (люминофоры, жидкие кристаллы, полупроводниковые пленки). Тепловизоры используются для определения местоположения и формы объектов, находящихся в темноте или в оптически непрозрачных средах. Применяются в дефектоскопии, навигации, а также в медицине.

Принцип действия

Вследствие того, что тела  нагреты неравномерно (например, температура автомобиля с работающим двигателем будет выше температуры автомобиля с двигателем выключенным), складывается некая картина распределения ИК-излучения.

Действие всех тепловизионных систем основано на фиксировании температурной разницы объект/фон и на преобразовании полученной информации в изображение, видимое глазом. Современные тепловизионные приборы способны обнаруживать температурный контраст, равный 0,05-0,1 К.

В то время как оптические приборы ночного видения, работающих на основе электронно-оптических преобразователей (ЭОП), улавливают излучение с длиной волны ~ 1-2 мкм, что лишь немногим выше чувствительности человеческого глаза, основные рабочие диапазоны тепловизионной аппаратуры охватывают следующие области длин волн: 8-14 мкм – область далекого ИК-излучения и 3-5,5 мкм – среднего ИК. Именно в этих областях приземные слои атмосферы прозрачны для ИК-излучения, а излучательная способность наблюдаемых объектов с температурой от -50 до +500С максимальна.

Таким образом, тепловизионные приборы способны обеспечивать большую дальность видения в любое время суток, через любую прозрачную для ИК-изучения маскировку и даже при несколько пониженной прозрачности атмосферы: при тумане, дожде, снегопаде, пыли и дыме. (Следует оговориться, что пары воды и углекислый газ весьма интенсивно поглощают волны ИК-спектра, и это заметно отражается на чувствительности приборов.)

Фоточувствительным элементом современного тепловизионного прибора является фокально-плоскостная двумерная многоэлементная матрица фотоприемников (FPA), изготовленная на основе полупроводников – примесных кремния и германия.

Поскольку в современных тепловизорах отсутствуют оптико-механические сканирующие устройства, они отличаются компактностью, малой энергоемкостью, высоким отношением сигнал/шум и хорошим качеством изображения.

Недостаток

Основным и главным недостатком тепловизора является большая цена. 90% стоимости прибора составляет его основные элементы: матрица и объектив.

Для понижения шумов и, следовательно, повышения пороговой чувствительности, в тепловизионных приборах матрицу фоточувствительных элементов охлаждает микрокомпрессорная система, либо используется термостабилизация при помощи термоэлектрической системы.

В последнее время все большее распространение получают приборы с неохлаждаемой микроболометрической матрицей.

Применение

Современные тепловизоры нашли широкое применение как на крупных промышленных предприятиях, где необходим тщательный контроль за тепловым состоянием объектов, так и в небольших организациях, занимающихся поиском неисправностей сетей различного назначения. Так, сканирование тепловизором может безошибочно показать место отхода контактов в системах электропроводки.

Особенно широкое применение тепловизоры получили в строительстве при оценке теплоизоляционных свойств конструкций. Так, к примеру, с помощью тепловизора можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей.

Широкое применение тепловизоры получили в военной индустрии для координации боевых действий в темное время суток. Эта дорогостоящая аппаратура может устанавливаться на самолеты-разведчики, для оценки количества живой силы противника и ее расположения на участке боевых действий

Помимо инженерного применения с 2008-2009 гг. тепловизоры начали также активно использовать в медицинских целях - для выделения из толпы лиц инфицированных вирусом гриппа