3.1. Загальні методики вимірювання рівня
Сучасні прилади рівня можна розділити на дві групи: рівнеміри (гідростатичні, механічні, ультразвукові та інші) і сигналізатори рівня (кондуктометричні, ємнісні).
Гідростатичні прилади займають важливе місце при вимірюванні рівня агресивних розчинів та рідин, що швидко кристалізуються, і застосовуються для вимірювання рівня в ємностях, які знаходяться під тиском. У цих приладах вимірювання рівня рідини базується на вимірюванні тиску, який утворюється стовпом рідини. Загальне рівняння для тиску Р стовпа рідини, має вигляд:
Р = * g *Н [Па],
де - густина рідини, кг/м ; Н – висота стовпа рідини (рівень), м; g – прискорення вільного падіння, м/с .
За способом вимірювання тиску гідростатичні рівнеміри діляться на прилади із безпосереднім вимірюванням тиску стовпа рідини та прилади з неперервним продуванням повітря через стовп рідини (п'єзометричні).
В широкому фізичному розумінні ультразвук - це груповий коливальний рух частинок пружного середовища, або послідовність стискувань та розріджень в середовищі, в ділянці частот, які ми не чуємо. В техніці прийнято вважати, що коливання частотою 16÷20 кГц є ультразвуковими. Інколи в ультразвуковій техніці використовують частоти і 13÷15 кГц.
Звук завжди породжується механічними коливаннями. Для збудження пружних хвиль в середовищі (речовині) необхідно виконати сполучення цього середовища з коливальним тілом (випромінювачем), яке має змінні стискування та розтягування своєї випромінювальної поверхні. Останні, в свою чергу, викликають змінні стискування та розрідження поверхні шару речовини (газу або рідини, яка знаходиться в взаємодії з випромінювачем), що приводить до виникнення пружних коливань, які розповсюджуються в середовищі.
Ультразвукові хвилі, розповсюджуючись в середовищі з певною густиною і проходячи крізь нього, повністю або частково відбиваються на межі розподілу із середовищем, яке має інше значення густини, напр., метал - повітря, повітря - метал, повітря - рідина, рідина - метал і т.д. В якості перетворювачів випромінювання та приймання ультразвукових хвиль використовуються платівки із кристалів кварцу, турмаліну, сегнетової солі, титанату барію та інші.
Потужність коливань залежить від частоти випромінювання, площі платівки випромінювача та величини підведеної до нього напруги. Для отримання максимальної інтенсивності випромінювання необхідно, щоб власна частота коливань платівки випромінювача співпадала з частотою коливань генератора.
При вимірюванні рівня заповнення резервуарів рідкими речовинами або рівня завантаження бункерів сипкими матеріалами, використовується схема одномірного виміру відстані між двома точками, в одній із яких (базовій) розміщується приймально-випромінюючий акустичний блок, а в якості другої точки (її називають відбивальна зона) використовується поверхня контрольованої за рівнем речовини (рідина чи сипкі матеріали).
Така схема взаємного положення називається схемою “ехо-локації”: випромінювані коливання після відбивання від контрольованої поверхні повертаються до приймача
На точність вимірювання відстані або рівня “ехо-методом” впливає зміна швидкості розповсюдження ультразвуку в повітрі від температури.
Сигналізатори рівня призначені для сигналізації рівня, якого треба досягти. Принцип дії ємнісних сигналізаторів заснований на перетворенні величини рівня в електричну ємність давача, а кондуктометричних – на вимірюванні опору між електродами, введеними в електропровідне середовище.
- Київ нухт 2008
- Лабораторна робота № 1 Вивчення методів та приладів для вимірювання температури (манометричного термометра, термометра опору та термоелектричного термометра – термопари)
- 1. Мета роботи
- 2. Завдання на виконання роботи
- 3. Загальні відомості про прилади для вимірювання температури
- 3.1 Загальна методика вимірювання температури
- 3.2 Теоретичні відомості про вимірювальний перетворювач температури sitrans tf2
- 4.Методика виконання роботи
- 4.1. Ознайомлення з принципом дії та будовою манометричного термометра
- 4.2. Порядок виконання повірки термометра опору та термоелектричного перетворювача
- 5. Висновки Контрольні запитання
- 2. Завдання на виконання роботи
- 3. Загальні відомості про манометри та методику вимірювання тиску
- . Загальна методика вимірювання тиску
- . Будова первинного вимірювального перетворювача надлишкового тиску Sitrans p zd
- 3.3. Принцип дії та будова електроконтактного мановакуумметра екмв
- 3.4. Будова первинного диференціального вимірювального перетворювача
- 4. Методика виконання роботи
- 4.1. Порядок виконання повірки sitrans р серії zd
- 4.2. Порядок виконання повірки екмв
- 4.3. Ознайомлення з принципом дії та будовою вимірювального перетворювача диференціального тиску sitrans р ds III
- 5. Висновки Контрольні запитання
- 2. Завдання на виконання роботи
- 3. Загальні відомості про вимірювання рівня
- 3.1. Загальні методики вимірювання рівня
- 3.2 Перетворювач тиску крт-с
- 3.3. Ультразвуковий рівнемір sitrans Probe lu
- 3.4. Ультразвуковий вимірювальний перетворювач рівня Multi Ranger 100 та сенсор xrs – 10.
- 4. Методика виконання роботи
- 4.1. Ознайомлення з принципом дії та будовою сигналізатора рівня та ультразвукового рівнеміра sitrans Multi Ranger 100
- 4.2. Порядок виконання повірки перетворювача гідростатичного тиску крт-с
- 4.3. Порядок виконання повірки ультразвукового рівнеміра sitrans probe lu
- 5. Висновки Контрольні запитання.
- 3. Загальні відомості про методи вимірювання витрати
- 3.1. Теорія магніто-індукційного методу вимірювання витрати
- 3.2. Загальні відомості про витратоміри постійного перепаду тиску
- 3.3. Магніто-індукційний витратомір sitrans fm mag 6000
- 3.4. Принцип дії водоміра (лічильника) схвк-1,5
- 4. Методика виконання роботи
- 4.1. Ознайомлення з принципом дії та будовою лічильника схвк-1,5, витратоміра постійного перепаду тиску (ротаметр) типу sitrans f va
- 4.2. Порядок виконання повірки магніто-індукційного витратоміра
- 5. Висновки Контрольні запитання
- Лабораторна робота № 5 Вивчення і дослідження автоматичної системи позиційного і пропорційно-інтегрального регулювання
- 1. Мета роботи
- 2. Завдання на виконання роботи
- 3. Загальні теоретичні відомості про системи регулювання
- 3.1. Відомості про об’єкт регулювання
- 3.2. Відомості про об’єкт регулювання в аср з позиційним регулятором
- 3.3. Відомості про об’єкт регулювання в аср з пропорційно-інтегральним регулятором
- 4. Порядок виконання роботи
- 5. Висновки
- 3. Засвоєння процедури складання та введення ПрК до пам'яті Ломіконта
- 3.1. Структура ПрК
- 3.2. Складання ПрК
- 3.3. Введення програми керування до пам'яті Ломіконта
- 4. Порядок виконання роботи
- 5. Зміст протоколу.
- 6.Висновки
- 7. Контрольні запитання
- 1. Мета роботи
- 2. Складання програми керування та введення її до оперативної пам'яті мпк
- 3. Налагодження програм у Ломіконті
- 3. 1. Режим "Пуск"
- 3. 2. Робота зi змінними
- 3.3. Аналіз виконання ПрК
- 3.4. Оперативна зміна коефіцієнтів алгоритмів
- 4. Порядок виконання роботи
- 5. Зміст протоколу
- 6. Висновки
- 7. Контрольні запитання
- Приклад аналізу задачі керуванння та складання ПрК Задача
- Алгоритм
- Контролери -серії
- 1. Загальні поняття
- Програмування та керування контролерами -серії за допомогою клавіш
- 2.1. Об’єднання двох блоків
- 2.2. Доступ до функціональних блоків
- 2 .3. Встановлення параметрів функціональних блоків
- 2.4. Виконання та зупинка програми
- Опис функціональних клавіш (клавіш управління)
- Опис функціональних блоків
- 3. Програмування контролерів -серії за допомогою програмного забезпечення на комп’ютері
- 3.1. Обмін програмою користувача між контролером та комп’ютером
- 3.2. Виконання та зупинка програми
- 3.3. Опис бібліотеки функціональних блоків.
- 3.3.1. Група вхідних та вихідних сигналів (in та out)
- Функціональні блоки вхідних сигналів
- Функціональні блоки вихідних сигналів
- 3.3.2. Група логічних блоків (logi)
- Функціональні блоки логічних функцій
- 3.3.3. Група функціональних блоків
- 3.3.4. Група системних біт та функціональних клавіш
- 4.2. Створення функціональних блоків користувача за допомогою контекстного меню
- 5. Порядок проведення лабораторних робіт
- 6. Зміст протоколу
- 7. Висновки.
- 8. Контрольні запитання
- Література