1. Введение. Классификация элементов систем автоматики
1 Основные понятия и определения
2 Обзор развития, современное состояние и значение элементов и технических средств автоматики
3 Основные принципы управления и регулирования
Основные понятия и определения
Автоматика как научная дисциплина рассматривает принципы и технические средства управления производственными процессамибез непосредственного участия человека. В общем случаеуправлениепредставляет собой такую организацию того или иного процесса, которая обеспечивает достижение определенных целей. Управление осуществляется с помощью специально организованных воздействий, прикладываемых к объекту управления и изменяющих его количественное и качественное состояние в соответствии с поставленной целью. Любой процесс управления можно разделить на четыре составляющих: 1) получение информации о цели управления или задание величины параметров состояния объекта; 2) получение информации о состоянии объекта; 3) переработка полученной информации и принятие решения, т.е. формирование сигнала управления; 4) исполнения решения — реализация управляющего воздействия, соответствующего выработанному сигналу управления. Соответственно для реализации автоматического управления необходимо иметь элементы — задающие, измерительные, управляющие (регулирующие) и исполнительные. Под элементом системы управления понимают составную, относительно самостоятельную ее часть, предназначенную для выполнения какой-либо определенной функции. Задающим элементом (задатчиком), называется элемент, вырабатывающий сигналы, соответствующие цели управления. В качестве задающего устройства могут использоваться простейшие реостатные задатчики, контактные командоаппараты, бесконтактные программные устройства и др. Измерительный элемент (измерительный преобразователь) служит для контроля состояния объекта, его выходных параметров, а также параметров внешней среды и передачи этой информации управляющему элементу системы. Управляющий (регулирующий) элемент в простейшем случае вырабатывает сигнал управления (регулирования), пропорциональный отклонению управляемой (регулируемой) величины от заданного значения. Обычно управляющий элемент (регулятор) имеет весьма сложное строение и может рассматриваться как система, состоящая из других элементов (усилителей, фильтров, суммирующих устройств и др.). Исполнительные элементы служат для непосредственного изменения состояния объекта управления. К исполнительным элементам относятся исполнительные механизмы и регулирующие органы, которые конструктивно могут быть объединены в едином изделии или собираются из индивидуально выпускаемых блоков. В некоторых случаях исполнительный элемент может состоять из одного блока, выполняющего функции исполнительного механизма. Под исполнительным механизмом в общем случае подразумевают блок, преобразующий входной управляющий сигнал от регулирующего устройства в сигнал, который через соответствующую связь осуществляет воздействие на регулирующий орган или непосредственно на объект регулирования. Как правило, это весьма мощные устройства, например электродвигатели, гидравлические и пневматические исполнительные механизмы. Регулирующим органом называют блок исполнительного элемента, с помощью которого оказывается регулирующее воздействие на объект регулирования. Регулирующие органы по конструкции представляют собой устройства, монтируемые непосредственно в технологические объекты. Так, для трубопроводов используют различные клапаны, заслонки, шиберы и т.п. Управление регулирующими органами осуществляется исполнительными механизмами, выполняющими функции их приводов. |
Обзор развития, современное состояние и значение элементов и технических средств автоматики
Начальным этапом развития средств автоматизации является создание простейших автоматов. Первые сведения об автоматах появились в начале нашей эры в работах Герона Александрийского, который создал пневмоавтомат для открывания дверей храма, автомат для продажи «священной» воды и др. В средние века развивалась «андроидная» автоматика, когда искусные механики создавали автоматы, подражающие отдельным действиям человека. Развитие также получили различные автоматы на основе часовых механизмов. На рубеже XVIII-XIX в.в., в эпоху промышленного переворота в Европе, начинается новый этап развития автоматики, связанный с ее внедрением в промышленность. К первым промышленным автоматическим устройствам относятся регулятор уровня воды парового котла И.И.Ползунова (1765 г.), регулятор скорости паровой машины Дж.Уатта (1784 г.), система программного управления от перфоленты ткацким станком Жаккара (1804-1808 г.г.) и т.д. В этот период начинает развиваться и теория автоматических систем. Формируется ряд важнейших принципов автоматики: принцип регулирования — стабилизации по отклонению Ползунова-Уатта, принцип регулирования по возмущению Понселе-Чиколева. Впервые глубокое теоретическое исследования систем автоматического регулирования с учетом нелинейных факторов было выполнено английским физиком Максвеллом, который получил условия устойчивости из анализа линеаризованных уравнений и поставил перед математиками проблему определения устойчивости линейных систем произвольной размерности. Следующий этап в исследованиях автоматических систем связан с именами И.А.Вышнеградского, А.Стодолы, Э.Рауса, А.Гурвица, Н.Е.Жуковского, А.М.Ляпунова, П.Л.Чебышева, В.А.Стеклова, А.Н.Крылова. Бурное развитие науки и техники в XX веке обусловило и качественный скачок как в исследованиях автоматических систем (Х.Найквист, А.В.Михайлов, В.В.Солодовников, А.Пуанкаре, В.Оппельт, А.Н.Колмогоров, В.С.Пугачёв, Н.Винер, Р.Беллман, Р.Калман, И.А.Вознесенский, Н.Н.Лузин и др.), так и в развитии элементов и устройств автоматизации (полупроводниковые приборы, технологии интегральной микросхемотехники, ЭВМ, микропроцессорные и компьютерные средства автоматизации и т.д.). Современными тенденциями в автоматизации производства являются широкое применение ЭВМ (промышленных контроллеров, компьютеров) для управления, создание машин и оборудования со встроенными микропроцессорными средствами измерения, контроля и регулирования, переход на децентрализованные (распределенные) структуры автоматизированных систем управления технологическими процессами (АСУ ТП) с микроконтроллерами, внедрение человеко-машинных систем, автоматизированное проектирование систем управления и др. | |
Основные принципы управления и регулирования
|
- Методическое пособие по курсу ЭиУсу
- 1. Введение. Классификация элементов систем автоматики
- 2. Типовые структуры и средства асу тп
- 3. Типизация, унификация и агрегатирование средств асу тп
- 4. Функциональные схемы автоматизации
- 5. Автоматические регуляторы систем автоматики
- 6. Электронные элементы систем автоматики
- 7. Электромагнитные устройства автоматики
- 8. Выбор элементов систем автоматики
- 11. Датчики температуры
- 12. Датчики угловых перемещений
- 13. Датчики давления
- 1. Общие сведения
- 1. Общие сведения
- 2. Классификация измерительных преобразователей давления
- 15. Датчики уровня жидкостей и сыпучих материалов
- 16. Технические средства измерения и контроля углового перемещения
- 18. Технические средства измерения и контроля уровня среды
- 19. Исполнительные механизмы и устройства систем автоматики
- 4. Основные характеристики эиу с электродвигателями
- 5. Позиционные эиу
- 6. Эиу постоянной скорости
- 7. Эиу переменной скорости
- 20. Управление вентильными преобразователями
- 21. Электрические машины постоянного тока
- 22. Электрические машины переменного тока
- 23. Электрические микромашины
- 4. Двигатели для микроперемещений