57.Ацп, классификация. Ацп последовательного счета.
Принцип работы АЦП последовательного счета со счетчиком рассмотрим с использованием структурной схемы, показанной на рис. Устройство содержит генератор тактовых импульсов (ГТИ), выход которого подключен к первому входу элемента 2И DDI. Выход элемента 2И соединен со счетным входом счетчика DD2, поразрядные выходы которого соединены с входами ЦАП. Выход ЦАП подключен к инвертирующему входу компаратора DA, к неинвертирующему входу которого подключается источник входного напряжения, преобразуемого в код. Выход компаратора соединен со вторым входом элемента 2И DDL. Работает АЦП следующим образом. В исходном состоянии на вход установки в нуль счетчика DD2 подан активный логический сигнал. Счетчик сброшен. Его выходной код равен нулю. Равно нулю и выходное напряжение ЦАП. Поэтому, если UBX>0, то на выходе компаратора присутствует сигнал лог. 1 и тактовые импульсы с выхода ГТИ через элемент 2И DDI поступают на вход С счетчика. Однако, так как сигнал на входе 0 выходной код счетчика = 0. Преобразование начинается в момент снятия со входа R активного логического сигнала (импульс «Пуск»). В этом случае с приходом каждого тактового импульса с выхода ГТИ счетчик выполняет операцию инкремента. Ею выходной код начинает увеличиваться. Соответственно увеличивается и выходное напряжение ЦАП. Этот процесс продолжается до тех пор, пока выходное напряжение ЦАП не превысит величину Uвх. В этот момент компаратор DA сформирует на выходе сигнал лог. 0. В результате на выходе элемента 2И DDI также будет сформирован сигнал лог. О и увеличение выходного кода счетчика прекратится.
П ри этом значение выходного кода счетчика будет прямо пропорционально входному напряжению UBX и обратно пропорционально абсолютной разрешающей способности используемого ЦАП
NвыхUвх/α.
Так как выходное напряжение ЦАП имеет форму ступенчатой функции, то напряжение Nвых, найденное, должно быть округлено до ближайшего целого числа, соответствующего номер первого уровня U*N, превышающего значение UBX (рис. 23.9). Для повторения цикла преобразования необходимо импульсом «Пуск» счетчик установить в нуль.
Очевидно, что время преобразования в рассмотренном АЦП прямо пропорционально его выходному коду и периоду следования импульсов ГТИ (Тгти) tc = Тгти*Nвых =Тгти*Uвх/α.
Рассмотренный режим работы называется циклическим, так как каждый раз импульс «Пуск» сбрасывает счетчик DD2 и поэтому счет (преобразование) всегда начинается с нуля. Если в АЦП использовать реверсивный счетчик, то можно реализовать нециклический режим работы, характеризующийся более высоким быстродействием. В этом случае на выходе счетчика постоянно присутствует код, пропорциональный текущему значению входного напряжения. Структурная схема АЦП, реализующего нециклический режим работы, показана на рис. В отличие от АЦП, работающего в циклическом режиме, в схему дополнительно введены инвертор DD4 и еще один элемент 2И DD3. Исходное состояние схемы аналогично состоянию циклического АЦП. Счетчик DD2 сброшен. Выходное напряжение ЦАП UORN=O и на вход «+1» счетчика DD2 поступает последовательность выходных импульсов ГТИ. При снятии активного логического уровня с входа R счетчика его выходной код начинает увеличиваться. Увеличивается и выходное напряжение ЦАП. Этот процесс протекает до момента t1, в который UORN>UBX.
102. Продолжение 1 Срабатывание компаратора DA приводит к тому, что на выходе элемента 2И DD1 формируется пассивный для входа «+1» счетчика DD2 сигнал. Одновременно инвертор DD4 формирует на нижнем входе элемента DD3 сигнал лог. 1. В результате этого на вход «-1» счетчика DD2 начинают поступать импульсы ГТИ. При этом счетчик выполняет операцию декремента и его выходной код начинает уменьшаться. Уменьшается и напряжение ЦАП. В момент нарушения неравенства UBX>UORN происходит очередное переключение компаратора DA и счетчик начинает увеличивать свой выходной код.
Таким образом, с момента прихода импульса «Пуск» до момента t1 оба рассмотренных АЦП работают одинаково. Однако после t1 выходной код нециклического АЦП постоянно следит за изменением входного напряжения, что значительно снижает его время преобразования.
Общим недостатком рассмотренных схем является длительность интервала в течение которого выходной код счетчика должен достичь значения, эквивалентного входному напряжению. Причем увеличение точности требует увеличения разрядности используемых счетчика и ЦАП и ведет к падению быстродействия рассмотренных устройств. Вследствие сказанного, данный тип АЦП при разработке ИС не используется.
Рис. 23.11 Временная диаграмма входного напряжения компаратора нециклического АЦП
Yandex.RTB R-A-252273-3
- 1. Транзисторы полевые и биполярные.
- 2. Тиристоры. Схемы включения.
- 3. Оптроны.Принцип действия и особенности применения.
- 4. Дифференциальный усилитель
- 5. Классификация резисторов и их применение
- 6. Слоистые пластики.
- 7. Керамические материалы в радиотехнике
- 8. Полупроводниковые материалы (германий, кремний, арсенид галлия)
- 9. Материалы высокой проводимости.
- 10. Модель надёжности системы с поэлементным резервированием.
- 11. Модель надежности системы при смешанном резервировании.
- 12. Мажоритарное резервирование
- 13. Влияние кратности резервирования µ на надежность системы.
- 14. Определение понятия надежности рэс. Предмет изучения теории надежности.
- 15. Основные причины возникновения отказов.
- 16. Последовательность процесса создания рэс
- 17. Разновидности радиоэл. Узлов. Сопоставительный анализ.
- 18.Критерии выбор элементной базы и принцип её замены.
- 19 Элементная база для монтажа на поверхность и тенденция ее развития
- 20. Основные требования к выполнению схем электр принципиальных.
- 21. Общие требования к выполнению текстовых документов
- 22. Смешивание сигналов записи и гсп.
- 23. Коррекция ачх вм
- 24. Структурная схема канала изображения вм
- 25. Оптическая система проигрывателя cd
- 26. Сервосистемы управления в проигрывателе компакт-дисков
- 1.3.4 Детектор прохождения нуля (fzc)
- 27. Дисковые носители информации (cd, cd-r, cd-rw, dvd, sacd)
- 28. Обобщенная структурная схема cdp
- 29. Обоснование актуальности и необходимости применения сапр при разработке рэс.
- 30. Этапы проектирования рэа и возможности их автоматизации.
- 31. Задача моделирования переходных процессов. Цели моделирования и метод решения.
- 32. Задача моделирования частотных характеристик схемы. Цель моделирования и метод решения
- 33. Обзор современных сапр электроники и машиностроения. Назначение и основные характеристики
- 34. Программа схемотехнического моделирования microcap. Предназначение, режимы моделирования.
- 35. Телефонная связь с коммутацией каналов. Ip-телефония: основные понятия, принципы работы, достоинства и недостатки
- 36. Классификация систем подвижной связи
- 1. Бытовые радиотелефоны
- 2. Односторонние и двухсторонние пейджинговые сети
- 37. Системы персональной спутниковой связи. Классификация орбит связных космических аппаратов.
- 38. Звук. Аналоговое представление звука в рэс бн. Оцифровка звука. Размер звукового файла.
- 39. Характер выпускной квалификационной работы специальности 552500
- 40. Структурная схема системы технического диагностирования
- 41. Особенности диагностирования радиотехнических устройств и систем.
- 42. Диагностирование цифровых устройств.
- 43. Термодинамика образования зародышей пленки
- 44. Магнетронное распыление
- 45. Понятие эпитаксии. Гомо- и гетероэпитаксия
- 46. Сущность процесса микролитографии
- 47. Физико-технологические основы наноразмерной технологии.
- 48. Входные цепи. Классификация, основные параметры и виды входных цепей. Режимы работы входных цепей: укороченная и удлиненная антенны
- 49. Усилители радиочастоты. Назначение, параметры. Схемотехника урч.
- 50. Преобразователи частоты: назначение, параметры. Примеры преобразователей частоты с совмещенным и раздельным гетеродином.
- 51. Усилители промежуточной частоты. Назначение, параметры, классификация упч. Схема упч с фсс.
- 52. Амплитудный детектор. Принципы амплитудного детектирования сигналов. Последовательный и параллельный амплитудный детектор
- 53. Частотные детекторы. Принцип частотного детектирования. Частотный детектор с связанными контурами.
- 54. Частотные детекторы. Принцип частотного детектирования. Частотный детектор с взаиморасстроенными контурами
- 55. Мультиплексоры и демультиплексоры: принцип действия, способы каскадирования, области использования
- 56. Счетчики: классификация, каскадирование, коэффициент счета
- 57.Ацп, классификация. Ацп последовательного счета.
- 58.Микропроцессор к1821вм85: назначение выводов, обслуживание прерываний и последовательных портов ввода/вывода.
- 59. Программируемый таймер кр580ви53, назначение выводов. Программирование таймера кр580ви53.
- 60 Программируемый параллельный интерфейс кр580вв55, назначение выводов. Программирование ппи кр580вв5.
- 61. Основные понятия теории цепей
- 62.Законы Кирхгофа
- 63.Классификация электрических цепей
- 64. Метод контурных токов
- 65.Метод узловых потенциалов
- 66. Классификация двигателей переменного тока
- 67.Основные параметры и характеристики электродвигателей постоянного тока.
- 68.Линейные источники питания
- 69. Импульсные источники питания
- 70.Аналоговые электронные устройства: классификация. Электронные усилители: классификация, основные параметры и характеристики
- 71. Обратные связи в усилителях
- 72.Операционные усилители. Классификация оу. Структура оу. Идеальный оу. Линейные и нелинейные преобразователи на оу. Компараторы.
- 73.Оконечные усилительные каскады. Одно-, двухтактные и мостовые каскады. Способы повышения кпд усилителей мощности.
- 74.Принцип электронного усиления. Режимы работы транзистора в усилительном каскаде. Способы стабилизации режима работы транзисторов.Режимы работы усилителей,
- 75.Принципы приёма тв сигнала. Структура и спектр тв сигнала.
- 76. Системы телевидения (secam).
- 77. Развертывающие устройства тв приемников
- 78. Структурная схема блока радиоканала тв-приемника