54. Интегральные микросхемы. Принцип построения. Технологические приемы реализации. Применение.
Интегральной микросхемой (ИМС) является многоэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигнала, и имеющее высокую плотность упаковки электрически соединенных элементов и (или) кристаллов.
Элементом ИМС называют часть ИМС, реализующую функцию какого-либо электрорадиоэлемента, которая выполнена нераздельно от кристалла или подложки. Обычно все элементы ИМС изготавливают одновременно в ходе единого технологического цикла. Полупроводниковые ИМС выполняются на кремниевых пластинках диаметром 30 – 60 мм, при помощи таких технологических процессов как резка, шлифовка, очистка, окисление, травление, фотолитография, диффузия. На одной пластине помещаются до 1000 микросхем и одновременно технологический процесс идет на несколько десятков пластин, поэтому стоимость одной пластины небольшая.
Основная структура полупроводниковой ИМС – это транзистор. На структуре транзистора выполняются все остальные элементы схемы. Для диода используются эмиттерный или коллекторный p-n-переходы, в таком случае лишний третий вывод присоединяется к выводу базы. Такое подключение называется транзистор в диодном включении.
Конденсатор. В качестве него применяется емкость p-n-перехода.
Резистор. В качестве резистора применяется область эмиттер или база, или коллектор, для чего только от этих областей делается 2 вывода.
Изоляция между элементами выполняется при помощи обратно включенных p-n-переходов, которые образуются между подложкой микросхемы и элементом. Такой p-n-переход имеет большое сопротивление, а значит выполняется изоляция.
Достоинства ИМС:
1. высокая степень интеграции.
2. малое количество сварных соединений, а значит высокая надежность.
3. малый размер, вес.
4. низкая себестоимость.
Недостатки ИМС:
1. один из больших недостатков – трудно получить большое количество элементов с разными параметрами.
2. существуют какие-то паразитные связи между элементами.
3. такие микросхемы, как правило, маломощные.
55. Особенности толстопленочных и тонкопленочных ИМС.
Пленочные ИС имеют плату из диэлектрика (стекло, керамика и др.). Пассивные эл-ты, т.е. резисторы, конденсаторы, катушки и соединения м/у эл-тами, выполняются в виде различных пленок, нанесенных на подложку. Активные эл-ты (диоды, транзисторы) не делаются пленочными, т.к. не удалось добиться их хорошего качества. Таким образом пленочные ИС содержат только пассивные эл-ты и представляют собой RC-цепи или какие-либо другие схемы.
Принято различать ИС тонкопленочные, у к-рых толщина пленок не более 2 мкм, и толстопленочные, у к-рых толщина пленок значительно больше. разница м/у этими ИС заключается не столько в толщине, сколько в различной технологии их нанесения.
Тонкопленочные резисторы по точности и стабильности лучше толстопленочных, но производство и сложнее и дороже. У тонкопленочных резисторов удельное сопротивление может быть от 10 до 300 Ом/□ и номиналы – от от 10 до 10^6 Ом. Точность их изготовления ±5%. Температуростабильность тонкопленочных резисторов характеризуется значением ТКС примерно 0.25*10^(-4) К^(-1). В течение длительного времени эксплуатации сопротивление этих резисторов мало изменяется.
Толстопленочные резисторы имеют удельное сопротивление от 5 Ом до 1 МОм на квадрат, номиналы от 0.5 до 5*10^8 Ом, точность их - ±15%, ТКС примерно 2*10^(-4) К^(-1). Их стабильность во времени хуже, чем у тонкопленочных резисторов.
- 1 Собственная электропроводность.
- 2. Примесные полупроводники. Полупроводники p,n типа.
- 6. Прямое включение p-n перехода.
- 7. Обратное включение p-n перехода.
- 8. Вольт-амперная характеристика p-n перехода. Идеальная и реальная вах p-n перехода.
- 9. Ёмкости p-n перехода. Диффузионная ёмкость. Барьерная ёмкость.
- 11.Контакт металл-полупроводник, выпрямляющий и невыпрямляющий.
- 12 Выпрямительные диоды
- 13. Соединение вентилей.
- 14. Импульсные диоды
- 15. Стабилитрон.
- 16. Варикап.
- 17. Диоды Шоттки
- 19 18. Туннельные и обращенные диоды. Принцип действия, параметры и характеристики.
- Обращенные диоды
- 21. Устройство биполярного транзистора.
- 22. Принцип действия транзистора в активном режиме
- 23. Токи в транзисторе
- 25. Схема включения транзистора с общей базой, основные параметры.
- 26.Статические характеристики транзистора с общей базой.Особенности схемы с общей базой. Достоинства и недостатки.
- 29.30.Статистические х-ки транзистора с оэ. Схема включения транзистора с общим эмиттером, основные параметры.
- 31. Схема включения транзистора с общим коллектором, основные параметры.
- 33 32. Основные параметры биполярных транзисторов.
- 35. Модель Эберса- Мола
- 36. Зависимость коэффициента передачи тока от частоты в схеме с общей базой [α(ω)].
- 36. Зависимость коэффициента передачи тока от частоты в схеме с общим эмиттером [β(ω)].
- 37. Дрейфовый транзистор
- 38. Полевой транзистор с р-n переходом.
- 39. Основные характеристики полевых транзисторов
- 40. Основные параметры полевых транзисторов
- 42. Полевой тр-р с изолированным затвором с встроенным каналом.
- 43. Полевой тр-р с изолированным затвором с индуцированным каналом.
- 45, Динистор.
- 48. Однопереходный транзистор.
- 49. Световод инжекционный
- 50. Светодиоды. Устройство и принцип действия.
- 51. Фотоприемники. Фоторезисторы.
- 52. Фототранзистор, фототиристор
- 53. Оптроны. Конструкция и принцип действия. Разновидности и сравнительная характеристика.
- 54. Интегральные микросхемы. Принцип построения. Технологические приемы реализации. Применение.
- 56. Фотолитография. Металлизация.
- 57. Гибридные микросхемы. Принцип построения. Технологические приемы реализации. Применение.
- 59. Способы изоляции м/у компонентами имс и их особенности.
- 60. Интегральные транзистор, диод, резистор, конденсатор
- 61. Совмещенные ис
- 64.Приборы с зарядовой связью.
- 66. Цифровые ис. Основные параметры.
- 63. Транзисторы с инжекционным питанием.