4.1. Представление усилительных каскадов в виде активных линейных четырехполюсников
В курсе теории цепей [15], где изучаются различные способы анализа процессов в электрических цепях, вводится понятие так называемых многополюсников — своеобразных "черных ящиков" с внешними выводами, описываемых набором характеристик, связывающих между собой токи и напряжения на зажимах многополюсника.
Такая модель оказывается очень эффективной для малосигнального анализа усилительных схем на транзисторах.
В этом случае используются т.н. активные линейные проходные четырехполюсники, представляющие собой многополюсники с двумя сторонами и имеющие по два вывода с каждой стороны (рис. 4.1). Одна пара выводов четырехполюсника (1— ) считается входной, другая (2— ) — выходной (т.е. четырехполюсник является несимметричным).
Основные уравнения проходных четырехполюсников составляются в терминах токов и напряжений внешних по отношению к четырехполюсникам цепей, подключенных к выводам 1— и 2—2'. В зависимости от решаемой задачи положительные направления токов этих ветвей могут выбираться различным образом (рис. 4.2). Поскольку речь идет о малосигнальном анализе (анализ для переменных составляющих токов и напряжений) линейных цепей, то будет корректным перейти от рассмотрения мгновенных значений переменных токов и напряжений к их комплексным амплитудам (рис. 4.2).
В связи с тем, что число независимых основных уравнений многополюсника равно числу его независимых сторон, зависимости между токами и напряжениями на выводах проходного четырехполюсника могут быть описаны с помощью системы из двух независимых основных уравнений. Вид этих уравнений зависит от того, какие две величины из четырех токов и напряжений рассматриваются в качестве независимых переменных, какие — в качестве зависимых. Учитывая, что число сочетаний из четырех токов и напряжений по два равно шести, приходим к заключению, что основные уравнения четырехполюсника могут быть записаны в шести различных формах.
Форма Y:
(4.1)
Форма Z:
(4.2)
Форма H:
(4.3)
Форма G:
(4.4)
Форма A;
(4.5)
Форма B:
(4.6)
При составлении основных уравнений проходного четырехполюсника в формах Y, Z, H, G положительные направления токов и напряжений принято выбирать в соответствии с рис. 4.2,а, при составлении основных уравнений в форме А — согласно рис. 4.2,6, а при составлении основных уравнений в форме В — в соответствии с рис. 4.2,в.
Комплексные коэффициенты основных уравнений (4.1), (4.2), (4.3), (4.4), (4.5), (4.6) называются соответственно Y-,Z-,H-,G-, и В-параметрами четырехполюсника. Каждый из этих параметров имеет физический смысл какой-либо комплексной частотной характеристики проходного четырехполюсника, определяемой в режиме короткого замыкания или холостого хода. Например, параметр имеет физический смысл комплексной входной проводимости четырехполюсника со стороны выводов 1 — 1' в режиме короткого замыкания на выводах 2 — 2', а параметр физический смысл величины, обратной комплексному коэффициенту передачи по напряжению от входов 1 — 1 ' к входам 2 — 2' при холостом ходе на выводах 2 — 2'. Математически системы уравнений (4.1), ... (4.6) являются равносильными, поэтому коэффициенты уравнений связаны между собой элементарными алгебраическими соотношениями (табл. 4.1)
Табл. 4.1. Формулы связи между системами Y-, Z-, и H-, параметров четырехполюсника
-
Z
Y
H
Z
Y
H
- Глава 1. О транзисторах для начинающих 6
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования 16
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов 34
- Глава 4. Малосигнальный анализ транзисторных схем 79
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах 105
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах 168
- Введение
- Глава 1. О транзисторах для начинающих
- 1.1 Основные разновидности современных транзисторов
- 1.2. Как устроен биполярный транзистор
- 1.3. Почему биполярный транзистор может усиливать сигналы
- 1.4. Режимы работы и схемы включения биполярных транзистров
- 1.5. Классы усиления
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования
- 2.1. Виды транзисторных усилителей
- 2.2. Основные задачи проектирования транзисторных усилителей
- 2.3 Применяемые при анализе схем обозначения и соглашения
- 2.4. Статистические характеристики
- 2.5. Статические и дифференциальные параметры транзисторов
- 2.6. Основные параметры усилителей
- 2.7. Обратные связи в усилителях
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов
- 3.1. Понятие рабочей точки
- 3.2. Критерии выбора положения исходной рабочей точки
- 3.3. Нагрузочная характеристика усилительного каскада
- 3.4. Простейшие способы установки исходной рабочей точки
- С хема с общим эмиттером
- 3.5. Обеспечение устойчивости рабочей точки при влиянии внешних дестабилизирующих факторов
- Метод параметрической стабилизации
- Стабилизация параметров транзисторных каскадов с помощью цепей обратной связи
- 3.6. Практический расчет и особенности схемотехники реальных устройств Порядок расчета цепей смещения
- Особенности реализации цепей смещения в реальных радиоэлектронных устройствах
- Комбинированные цепи смещения с источниками и стабилизаторами тока и напряжения
- Глава 4. Малосигнальный анализ транзисторных схем
- 4.1. Представление усилительных каскадов в виде активных линейных четырехполюсников
- 4.2. Дифференциальные параметры транзистора четырехполюсника
- 4.3. Эквивалентная схема транзисторов-четырехполюсников
- 4.4 Низкочастотные дифференциальные параметры транзистора четырехполюсника
- 4.5. Виды эквивалентных схем, методы построения эквивалентных схем с действительными параметрами составляющих элементов
- 4.6. Гибридная высокочастотная эквивалентная схема биполярного транзистора
- 4.7. Физические эквивалентные схемы биполярных транзисторов
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах
- 5.1. Схемотехника усилительных каскадов на биполярных транзисторах
- Усилители низкой частоты
- Усилители высокой частоты
- Усилители в интегральном исполнении
- 5.2. Схема с общим эмиттером Типовое схемное решение усилительного каскада с оэ и его анализ
- Анализ влияния оос по току нагрузки на параметры каскада
- Усилительный каскад с оос по напряжению
- Следящая обратная связь
- Усилительный каскад с транзисторной обратной связью
- 5.3. Схема с общей базой Типовое схемное решение усилительного каскада с об и его анализ
- Усилительный каскад по схеме с об с трансформаторной обратной связью
- 5.4. Схема с общим коллектором Типовое схемное решение усилительного каскада с ок и его анализ
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах
- 6.1. Основные этапы процесса проектирования
- 6.2.Низкочастотный микшер Постановка задачи
- П остроение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.3. Антенный усилитель диапазона дмв Постановка задачи
- Построение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.4. Краткий обзор нескольких простых схем
- Фазовращатель на основе типового усилительного каскада с 0э (ок)
- Низкочастотный усилитель с включением регулятора громкости в цепь оос
- Приемник прямого усиления
- Включение двойного балансного смесителя на выходе усилительного звена с оэ (ок)
- Приставка к узч для обеспечения псевдоквадрафонического звучания
- Ускорение включения транзисторных усилителей
- Список литературы