4.5. Виды эквивалентных схем, методы построения эквивалентных схем с действительными параметрами составляющих элементов
Как следует из сказанного выше, все малосигнальные (дифференциальные) параметры транзисторов так или иначе зависят от частоты переменного сигнала. Причем с ростом этой частоты все более значительными становятся их мнимые (реактивные) составляющие (для разных параметров эти зависимости различны). Чтобы отразить на эквивалентных схемах с элементами, описываемыми только действительными величинами, влияние этих факторов, туда вводятся дополнительные элементы с чисто реактивными проводимостями (обычно это емкости). При таком подходе эквивалентная схема хотя и перестает быть полным аналогом линейного проходного четырехполюсника с комплексными параметрами, но продолжает относительно точно отражать происходящие в нем процессы до достаточно высокого диапазона частот. Все это становится возможным только благодаря тем особым свойствам, которые присущи именно транзисторным усилительным каскадам, рассматриваемым в качестве линейных проходных четырехполюсников (пример описанной методики преобразования обобщенной эквивалентной схемы для случая Т-образной схемы с источником тока дан на рис. 4.10).
Рис.4.10. Т- образная эквивалентная схема транзистора четырехполюсника в системе Z-параметров с действительными параметрами элементов, построенная на основе обобщенной эквивалентной схемы с рис. 4.8
На самом деле, перейдя от рассмотрения обобщенных эквивалентных схем транзисторов-четырехполюсников с комплексными параметрами составляющих их элементов к схемам с действительными параметрами и дополнительными элементами, учитывающими некоторые физические процессы в транзисторах, мы фактически начали использовать новую систему малосигнальных параметров и эквивалентных схем — физические параметры и физические эквивалентные схемы.
Физические эквивалентные схемы составляют на основании физических соображений для определенных типов конструкций транзисторов, для определенного частотного диапазона, ориентируясь на определенную схему включения. Каждый вывод физической эквивалентной схемы соответствует электроду транзистора. При построении этих схем обычно выделяют мысленно некоторые части в транзисторе и рассматривают отдельно процессы в этих частях. За основу построения, как правило, берут формальную эквивалентную схему идеализированного транзистора, называемого одномерной теоретической моделью.
Для нахождения физических эквивалентных схем транзисторов также могут использоваться и приведенные выше методы доработки обобщенных эквивалентных схем транзисторов-четырехполюсников. Получаемые таким образом эквивалентные схемы, с одной стороны, содержат в себе элементы, отражающие работу транзисторного каскада как линейного проходного четырехполюсника, а с другой стороны, учитывают некоторые физические процессы, происходящие в транзисторе при работе. Их принято называть гибридными схемами замещения (гибридными эквивалентными схемами).
Выше (рис. 4.9) была представлена обобщенная П- образная эквивалентная схема с источником тока. Очевидно, что на низких частотах все элементы этой схемы действительны и имеют размерности проводимостей. При повышении частоты эти проводимости приобретают реактивные составляющие. При этом эквивалентная схема, например, для биполярного транзистора во включении с ОЭ может быть представлена в виде, показанном на рис. 4.11.
Рис.4.11. П-образная эквивалентная схема биполярного транзистора при включении с ОЭ в системе Y- параметров
Физический смысл элементов эквивалентной схемы на рис. 4. 1 1 следующий:
— активная составляющая дифференциальной проводимости эмиттерного перехода биполярного транзистора в схеме с ОЭ, может быть найдена через низкочастотные y-параметры транзистора по формуле:
для схемы с ОЭ активная составляющая дифференциальной проводимости коллекторного перехода обычно гораздо меньше ;
— активная составляющая дифференциальной проводимости коллекторного перехода биполярного транзистора в схеме с ОЭ, равна:
— активная составляющая дифференциальной проводимости участка коллектор — эмиттер биполярного транзистора в схеме с ОЭ, находится по формуле:
— емкость эмиттерного перехода биполярного транзистора в схеме с ОЭ, отражающая реактивную составляющую его полной дифференциальной проводимости (для биполярного транзистора в схеме с ОЭ емкость в основном обусловлена диффузионной емкостью открытого эмиттерного перехода транзистора), на практике для нахождения емкости С6э можно пользоваться следующим приближением:
где ( — предельная частота проводимости прямой передачи транзистора, на которой
— емкость коллекторного перехода биполярного транзистора в схеме с ОЭ, отражающая реактивную составляющую его полной дифференциальной проводимости (эта емкость обусловлена в основном барьерной емкостью коллекторного перехода транзистора):
где — измеренная емкость коллекторного перехода (берется из документации на конкретный транзистор);
— емкость участка коллектор—эмиттер биполярного транзистора в схеме с ОЭ, отражающая реактивную составляющую полной дифференциальной проводимости для расчета можно пользоваться следующей приближенной формулой:
, где —распределенное сопротивление базы транзистора (иногда присутствует в стандартной документируемой информации);
Y—коэффициент (в общем случае комплексный), равный: поскольку на низких частотах определенной полосе частот можно считать: где — крутизна характеристики передачи транзистора.
Данная модель позволяет более или менее точно описывать поведение биполярных и полевых транзисторов на частотах . Иногда элементы приведенной на рис. 4.11 эквивалентной схемы обозначают большими буквами с цифровыми индексами:
- Глава 1. О транзисторах для начинающих 6
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования 16
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов 34
- Глава 4. Малосигнальный анализ транзисторных схем 79
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах 105
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах 168
- Введение
- Глава 1. О транзисторах для начинающих
- 1.1 Основные разновидности современных транзисторов
- 1.2. Как устроен биполярный транзистор
- 1.3. Почему биполярный транзистор может усиливать сигналы
- 1.4. Режимы работы и схемы включения биполярных транзистров
- 1.5. Классы усиления
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования
- 2.1. Виды транзисторных усилителей
- 2.2. Основные задачи проектирования транзисторных усилителей
- 2.3 Применяемые при анализе схем обозначения и соглашения
- 2.4. Статистические характеристики
- 2.5. Статические и дифференциальные параметры транзисторов
- 2.6. Основные параметры усилителей
- 2.7. Обратные связи в усилителях
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов
- 3.1. Понятие рабочей точки
- 3.2. Критерии выбора положения исходной рабочей точки
- 3.3. Нагрузочная характеристика усилительного каскада
- 3.4. Простейшие способы установки исходной рабочей точки
- С хема с общим эмиттером
- 3.5. Обеспечение устойчивости рабочей точки при влиянии внешних дестабилизирующих факторов
- Метод параметрической стабилизации
- Стабилизация параметров транзисторных каскадов с помощью цепей обратной связи
- 3.6. Практический расчет и особенности схемотехники реальных устройств Порядок расчета цепей смещения
- Особенности реализации цепей смещения в реальных радиоэлектронных устройствах
- Комбинированные цепи смещения с источниками и стабилизаторами тока и напряжения
- Глава 4. Малосигнальный анализ транзисторных схем
- 4.1. Представление усилительных каскадов в виде активных линейных четырехполюсников
- 4.2. Дифференциальные параметры транзистора четырехполюсника
- 4.3. Эквивалентная схема транзисторов-четырехполюсников
- 4.4 Низкочастотные дифференциальные параметры транзистора четырехполюсника
- 4.5. Виды эквивалентных схем, методы построения эквивалентных схем с действительными параметрами составляющих элементов
- 4.6. Гибридная высокочастотная эквивалентная схема биполярного транзистора
- 4.7. Физические эквивалентные схемы биполярных транзисторов
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах
- 5.1. Схемотехника усилительных каскадов на биполярных транзисторах
- Усилители низкой частоты
- Усилители высокой частоты
- Усилители в интегральном исполнении
- 5.2. Схема с общим эмиттером Типовое схемное решение усилительного каскада с оэ и его анализ
- Анализ влияния оос по току нагрузки на параметры каскада
- Усилительный каскад с оос по напряжению
- Следящая обратная связь
- Усилительный каскад с транзисторной обратной связью
- 5.3. Схема с общей базой Типовое схемное решение усилительного каскада с об и его анализ
- Усилительный каскад по схеме с об с трансформаторной обратной связью
- 5.4. Схема с общим коллектором Типовое схемное решение усилительного каскада с ок и его анализ
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах
- 6.1. Основные этапы процесса проектирования
- 6.2.Низкочастотный микшер Постановка задачи
- П остроение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.3. Антенный усилитель диапазона дмв Постановка задачи
- Построение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.4. Краткий обзор нескольких простых схем
- Фазовращатель на основе типового усилительного каскада с 0э (ок)
- Низкочастотный усилитель с включением регулятора громкости в цепь оос
- Приемник прямого усиления
- Включение двойного балансного смесителя на выходе усилительного звена с оэ (ок)
- Приставка к узч для обеспечения псевдоквадрафонического звучания
- Ускорение включения транзисторных усилителей
- Список литературы