Комбинированные цепи смещения с источниками и стабилизаторами тока и напряжения
Прежде всего напомним читателю то, о чем мы говорили в разделе 3.4. И в первую очередь — базовые положения, на основании которых мы пришли к стандартным схемам задания смещения с фиксированным током базы и эмиттерно-базовой стабилизации. Суть этих положений состояла в следующем.
Задание рабочей точки по постоянному току состоит в задании и поддержании стабильными всех токов и напряжений на (между) электродах транзистора. Анализ статических характеристик показывает, что стабилизация с помощью внешних цепей тока базы, напряжения база—эмиттер или коллектор—база приводит к автоматической стабилизации и всех других показателей. Остается только проблема поддержания этих показателей на заданном уровне при разнообразных внешних воздействиях (колебания температуры, напряжения питания и т.п.).
В схеме с фиксированным током базы на рис. 3.5 мы рассматривали включение резистора IБ в цепь протекания базового тока как средство задания величины этого тока. Мы можем обобщить указанную схему и представить ее в виде, показанном на рис. 3.39.Здесь специальный символ используется для обозначения идеализированного источника постоянного тока. Это общепринятое обозначение, и мы будем применять его в дальнейшем и для описания источников переменного тока.
В реальных схемах источник тока замещается некоторой конкретной электрической цепью. В зависимости от необходимой точности приближения к идеалу и режима работы такая цепь может содержать различное (иногда относительно большое) количество компонентов. В рамках данной книги мы не будем рассматривать способы реализации источников тока. Однако для примера приведем ряд довольно простых схем на биполярных транзисторах, которые могут выполнять эту роль (рис. 3.40). Полная же схема задания режима работы биполярного транзистора по постоянному току с применением источника тока может выглядеть, например, так, как показано на рис. 3.41.
Т еперь обратимся к схеме эмиттерно-базовой стабилизации (рис. 3.6). Ее обобщенный вариант, в котором делитель напряжения на резисторах R1, R2 заменен на идеализированный источник напряжения ( обозначается символом (>) ), показан на рис. 3.42. В отличие от случая с источником тока использование подобного решения возможно далеко не всегда (теоретически возможно в высокочастотных каскадах). Обусловлено это в первую очередь тем, что внутреннее сопротивление идеализированного источника напряжения считается нулевым (у реальных схем оно, конечно, отличается от нуля, но все равно очень низкое). Кроме того, возникают некоторые проблемы и с обеспечением температурной стабильности рабочей точки. В результате решения с источниками напряжения не находят широкого применения в усилительных каскадах, и приводить здесь какие-либо конкретные примеры мы не будем.
- Глава 1. О транзисторах для начинающих 6
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования 16
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов 34
- Глава 4. Малосигнальный анализ транзисторных схем 79
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах 105
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах 168
- Введение
- Глава 1. О транзисторах для начинающих
- 1.1 Основные разновидности современных транзисторов
- 1.2. Как устроен биполярный транзистор
- 1.3. Почему биполярный транзистор может усиливать сигналы
- 1.4. Режимы работы и схемы включения биполярных транзистров
- 1.5. Классы усиления
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования
- 2.1. Виды транзисторных усилителей
- 2.2. Основные задачи проектирования транзисторных усилителей
- 2.3 Применяемые при анализе схем обозначения и соглашения
- 2.4. Статистические характеристики
- 2.5. Статические и дифференциальные параметры транзисторов
- 2.6. Основные параметры усилителей
- 2.7. Обратные связи в усилителях
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов
- 3.1. Понятие рабочей точки
- 3.2. Критерии выбора положения исходной рабочей точки
- 3.3. Нагрузочная характеристика усилительного каскада
- 3.4. Простейшие способы установки исходной рабочей точки
- С хема с общим эмиттером
- 3.5. Обеспечение устойчивости рабочей точки при влиянии внешних дестабилизирующих факторов
- Метод параметрической стабилизации
- Стабилизация параметров транзисторных каскадов с помощью цепей обратной связи
- 3.6. Практический расчет и особенности схемотехники реальных устройств Порядок расчета цепей смещения
- Особенности реализации цепей смещения в реальных радиоэлектронных устройствах
- Комбинированные цепи смещения с источниками и стабилизаторами тока и напряжения
- Глава 4. Малосигнальный анализ транзисторных схем
- 4.1. Представление усилительных каскадов в виде активных линейных четырехполюсников
- 4.2. Дифференциальные параметры транзистора четырехполюсника
- 4.3. Эквивалентная схема транзисторов-четырехполюсников
- 4.4 Низкочастотные дифференциальные параметры транзистора четырехполюсника
- 4.5. Виды эквивалентных схем, методы построения эквивалентных схем с действительными параметрами составляющих элементов
- 4.6. Гибридная высокочастотная эквивалентная схема биполярного транзистора
- 4.7. Физические эквивалентные схемы биполярных транзисторов
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах
- 5.1. Схемотехника усилительных каскадов на биполярных транзисторах
- Усилители низкой частоты
- Усилители высокой частоты
- Усилители в интегральном исполнении
- 5.2. Схема с общим эмиттером Типовое схемное решение усилительного каскада с оэ и его анализ
- Анализ влияния оос по току нагрузки на параметры каскада
- Усилительный каскад с оос по напряжению
- Следящая обратная связь
- Усилительный каскад с транзисторной обратной связью
- 5.3. Схема с общей базой Типовое схемное решение усилительного каскада с об и его анализ
- Усилительный каскад по схеме с об с трансформаторной обратной связью
- 5.4. Схема с общим коллектором Типовое схемное решение усилительного каскада с ок и его анализ
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах
- 6.1. Основные этапы процесса проектирования
- 6.2.Низкочастотный микшер Постановка задачи
- П остроение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.3. Антенный усилитель диапазона дмв Постановка задачи
- Построение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.4. Краткий обзор нескольких простых схем
- Фазовращатель на основе типового усилительного каскада с 0э (ок)
- Низкочастотный усилитель с включением регулятора громкости в цепь оос
- Приемник прямого усиления
- Включение двойного балансного смесителя на выходе усилительного звена с оэ (ок)
- Приставка к узч для обеспечения псевдоквадрафонического звучания
- Ускорение включения транзисторных усилителей
- Список литературы