Усилители в интегральном исполнении
До сих пор мы говорили только об усилителях, строящихся из обычных дискретных компонентов. Но в радиотехнике все большее значение приобретают интегральные усилители, применяющиеся как на низких, так и на высоких частотах. Вообще, проблема проектирования интегральных микросхем, хотя и крайне важна, но в настоящей книге описывается лишь вскользь. Однако читатель должен понимать, что многие из представляемых решений на биполярных транзисторах находят применение в первую очередь внутри интегральных микросхем, выполняемых либо как приборы многофункциональные, либо ориентированные только на выполнение одной функции усиления сигналов (операционные усилители).
Схемотехника интегральных усилителей обладает рядом особенностей, которые мы практически не затрагивали при предыдущем описании низкочастотных и высокочастотных усилителей. Все эти особенности продиктованы в первую очередь теми ограничениями, которые присущи технологии производства самих интегральных микросхем.
Во-первых, внутри микросхем крайне затруднена реанизация емкостей и индуктивностей. Это приводит к тому, что единственным способом связи между каскадами в многокаскадных усилителях оказывается непосредственная связь, т.е. интегральные усилители неизбежно являются усилителями достоянного тока. Для формирования частотной характеристики такого усилителя применяются внешние по отношению к микросхеме корректирующие цепи на дискретных элементах. Данное ограничение приводит к существенным проблемам при согласовании каскадов и вынуждает включать в состав схем множество дополнительных цепей, использования которых можно было бы избежать при применении дискретных компонентов (как правило, разработчики микросхем не слишком ограничены числом применяемых в усилителе транзисторов, так что наличие большого количества дополнительных цепей различного функционального назначения создает проблему только для тех, кто пытается разобраться в том, как работает та или иная микросхема).
Второй особенностью интегральной технологии являются трудности в реализации на одной кремниевой пластине транзисторных структур различных типов (биполярных и полевых). Таким образом, интегральные усилители могут строиться либо только на основе биполярных транзисторов, либо только на основе полевых транзисторов (конечно, технологии совершенствуются, и данное ограничение иногда можно обойти).
Третий аспект связан с режимами работы транзисторов в интегральных усилителях. Желание минимизировать токи потребления приводит к появлению совершенно особенных транзисторных структур, работающих при очень низких токах и напряжениях. Такие транзисторы в дискретном исполнении не встречаются и требуют особого изучения.
При проектировании усилителей на дискретных компонентах приходится рассчитывать температурные режимы для каждого транзистора в отдельности. В интегральных схемах это не так. Поскольку все приборы расположены на одном кристалле, то разогрев одного из них автоматически означает разогрев и всех остальных до той же температуры (конечно же, это не происходит мгновенно), т.е., как правило, нет необходимости в отслеживании температурного режима "по персоналиям". Но, с другой стороны, проблема температурной стабильности становится одной из важнейших, поскольку рабочая температура всех каскадов усилителя может колебаться в очень широком диапазоне.
- Глава 1. О транзисторах для начинающих 6
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования 16
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов 34
- Глава 4. Малосигнальный анализ транзисторных схем 79
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах 105
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах 168
- Введение
- Глава 1. О транзисторах для начинающих
- 1.1 Основные разновидности современных транзисторов
- 1.2. Как устроен биполярный транзистор
- 1.3. Почему биполярный транзистор может усиливать сигналы
- 1.4. Режимы работы и схемы включения биполярных транзистров
- 1.5. Классы усиления
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования
- 2.1. Виды транзисторных усилителей
- 2.2. Основные задачи проектирования транзисторных усилителей
- 2.3 Применяемые при анализе схем обозначения и соглашения
- 2.4. Статистические характеристики
- 2.5. Статические и дифференциальные параметры транзисторов
- 2.6. Основные параметры усилителей
- 2.7. Обратные связи в усилителях
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов
- 3.1. Понятие рабочей точки
- 3.2. Критерии выбора положения исходной рабочей точки
- 3.3. Нагрузочная характеристика усилительного каскада
- 3.4. Простейшие способы установки исходной рабочей точки
- С хема с общим эмиттером
- 3.5. Обеспечение устойчивости рабочей точки при влиянии внешних дестабилизирующих факторов
- Метод параметрической стабилизации
- Стабилизация параметров транзисторных каскадов с помощью цепей обратной связи
- 3.6. Практический расчет и особенности схемотехники реальных устройств Порядок расчета цепей смещения
- Особенности реализации цепей смещения в реальных радиоэлектронных устройствах
- Комбинированные цепи смещения с источниками и стабилизаторами тока и напряжения
- Глава 4. Малосигнальный анализ транзисторных схем
- 4.1. Представление усилительных каскадов в виде активных линейных четырехполюсников
- 4.2. Дифференциальные параметры транзистора четырехполюсника
- 4.3. Эквивалентная схема транзисторов-четырехполюсников
- 4.4 Низкочастотные дифференциальные параметры транзистора четырехполюсника
- 4.5. Виды эквивалентных схем, методы построения эквивалентных схем с действительными параметрами составляющих элементов
- 4.6. Гибридная высокочастотная эквивалентная схема биполярного транзистора
- 4.7. Физические эквивалентные схемы биполярных транзисторов
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах
- 5.1. Схемотехника усилительных каскадов на биполярных транзисторах
- Усилители низкой частоты
- Усилители высокой частоты
- Усилители в интегральном исполнении
- 5.2. Схема с общим эмиттером Типовое схемное решение усилительного каскада с оэ и его анализ
- Анализ влияния оос по току нагрузки на параметры каскада
- Усилительный каскад с оос по напряжению
- Следящая обратная связь
- Усилительный каскад с транзисторной обратной связью
- 5.3. Схема с общей базой Типовое схемное решение усилительного каскада с об и его анализ
- Усилительный каскад по схеме с об с трансформаторной обратной связью
- 5.4. Схема с общим коллектором Типовое схемное решение усилительного каскада с ок и его анализ
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах
- 6.1. Основные этапы процесса проектирования
- 6.2.Низкочастотный микшер Постановка задачи
- П остроение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.3. Антенный усилитель диапазона дмв Постановка задачи
- Построение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.4. Краткий обзор нескольких простых схем
- Фазовращатель на основе типового усилительного каскада с 0э (ок)
- Низкочастотный усилитель с включением регулятора громкости в цепь оос
- Приемник прямого усиления
- Включение двойного балансного смесителя на выходе усилительного звена с оэ (ок)
- Приставка к узч для обеспечения псевдоквадрафонического звучания
- Ускорение включения транзисторных усилителей
- Список литературы