Построение развернутой блок-схемы
Во-первых, проанализируем проблему несколько подробнее и для начала попытаемся выяснить основные причины плохого приема сигналов в диапазоне ДМВ, тем более что та же телебашня вещает и в диапазоне МВ, качество сигнала в котором нас вполне устраивает.
Первое, что приходит в голову, — это низкая эффективность применяемой нами ДМВ-антенны. Однако на практике телевизионные антенны ДМВ обычно имеют гораздо более сложную конструкцию и более эффективны, чем типичные бытовые антенны метрового диапазона. Причина в другом — энергия излучения телевизионных передатчиков, используемых на телецентре, очень часто ниже в диапазоне ДМВ, чем в диапазоне МВ (это обусловлено, в основном, не столько техническими, сколько организационными факторами: менее "крутым" каналам — менее "крутые" частоты и технику), а кроме этого, и затухание дециметровых волн в атмосфере гораздо выше. В результате энергия полезного сигнала, принятая антенной и переданная в кабель, очень мала. Дополнительную лепту вносит сам кабель, соединяющий антенну с телевизором. Ведь с увеличением частоты увеличивается и удельное затухание сигнала в кабеле. Так что до телевизора доходит лишь слабенький, забитый шумами сигнал, который уже не может обеспечить надлежащее качество. Выходом из положения является применение антенного усилителя, который повысит мощность полезного сигнала, поступающего в телевизор.
Заметим, что определенное влияние на качество приема имеет чувствительность самого телевизора. Современные телевизоры имеют очень высокую чувствительность, и мы будем исходить из того, что раз уж сигнал не может быть с надлежащим качеством воспроизведен самим телевизором, то и все наши меры по его дополнительному усилению непосредственно перед передачей в телевизор не имеют смысла. Так что усиливать сигнал надо сразу после приема его антенной — до того, как он будет существенно ослаблен из-за затухания в длинном кабеле. А это означает, что наш усилитель будет находиться там же, где и антенна, — вне помещения, подвергаясь при этом самым разнообразным природным воздействиям. Все это нам предстоит учесть при проектировании.
Перво-на-перво, нам следует определиться с тем, какое конкретно усиление мы хотим получить от нашего усилителя. Во многом это зависит от длины и типа примененного кабеля, а также от чувствительности телевизора. В большинстве случаев уровень в 10...15 дБ можно считать вполне приемлемым, так что будем стремиться именно к нему.
Теперь наконец мы можем приступить и к построению блок-схемы нашего усилителя. Начнем со входного узла.
Итак, перед нами стоит задача усилить очень слабый высокочастотный сигнал, внеся в него при этом минимум искажений (шумов). По всей видимости, с этой задачей лучше всего справится один из рассмотренных нами усилителей с ОБ. Например, усилитель с внутрикаскадной трансформаторной ООС, изображенный на рис. 5.23. Посмотрим, какие у нас могут возникнуть проблемы.
Усилители с ОБ характеризуются относительно низким по сравнению с каскадами с ОЭ динамическим диапазоном и повышенной склонностью к самовозбуждению. В нашем случае узкий динамический диапазон может стать некоторой преградой. Дело в том, что мощные сигналы, излучаемые телецентром в метровом диапазоне волн, могут попасть на вход усилителя и возбудить его. Чтобы предотвратить это, нам придется включить на входе первого каскада фильтр высоких частот, который будет подавлять нежелательные сигналы и обеспечит устойчивую работу усилителя. Дополнительной функцией такого фильтра станет согласование импедансов между антенным кабелем и входом первого усилительного звена. Все остальные части усилителя мы будем стараться выполнить максимально широкополосными. Это необходимо, во-первых, потому что диапазон ДМВ достаточно широк, а во-вторых, для обеспечения минимального уровня искажений усиливаемого сигнала.
После прохождения первого каскада усиления уровень полезного сигнала уже может оказаться довольно высоким (однако, учитывая наличие ФВЧ, усиление на 10...15 дБ достигнуто не будет). Это означает, что строить последующий каскад также по схеме с ОБ несколько рискованно - придется опять решать проблему динамического диапазона. Поэтому во втором каскаде усилителя применим решение с ОЭ. Например, схему с трансформаторной ООС, представленную на рис. 5.11. Мы опять используем решение с широкополосным трансформатором, поскольку именно оно в данном случае наилучшим образом отвечает нашим требованиям.
Двух каскадов усиления уже достаточно для достижения поставленной задачи (10...15 дБ), и мы можем перейти к следующему вопросу - организации питания и способам задания исходных рабочих точек всех элементов усилителя.
Здесь пришла пора снова вспомнить об условиях, в которых будет эксплуатироваться наш усилитель. А это, во-первых, широкий диапазон температур окружающей среды (-30...+40°С), а во-вторых, значительная удаленность от источника питания (если только мы не станем использовать батарейку, закрепляемую рядом с усилителем). Широкий температурный диапазон означает, что мы должны принять особые меры по стабилизации исходных рабочих точек для всех транзисторов усилителя, а удаленность от источника питания - что из-за длинного шлейфа питания, возможно, проходящего вблизи разнообразных источников наводок, напряжение, подаваемое к усилителю, не будет стабильным. Анализируя условия работы первого каскада, мы неизбежно придем к заключению, что для него высокая стабильность режима по постоянному току - это одно из важнейших требований, к соблюдению которого мы должны приложить максимум усилий. Действительно, от текущего режима работы транзистора по постоянному току довольно сильно зависят такие показатели, как: коэффициент усиления, коэффициент шума, динамический диапазон. А мы никак не можем допустить сколь-либо значительного дрейфа этих параметров (по крайней мере, во входном каскаде нашего усилителя). Таким образом, нам необходимо принять особые меры по обеспечению стабильности исходной рабочей точки в первом каскаде. Требуемую стабильность нельзя обеспечить с помощью таких простых цепей смещения, как подробно рассмотренные нами в главе 3, - мы должны использовать более сложное решение, например один из вариантов с источником тока, показанный на рис. 3.40. При рассмотрении высокочастотных усилителей с ОБ мы уже приводили пример с источником тока (рис. 5.31), им и воспользуемся.
Требования к стабильности исходной рабочей точки во втором каскаде оказываются не столь жесткими, и мы можем слегка "расслабиться" и применить, например, схему эмиттерно-базовой стабилизации с ООС по току и напряжению с дополнительным термокомпенсирующим диодом (рис. 3.18 и рис. 3.23).
Поскольку напряжение питания может оказаться нестабильным, нам придется встроить в усилитель простейший стабилизатор напряжения, постаравшись и в нем обеспечить высокую температурную устойчивость.
Итак, мы определились с деталями исполнения обоих усилительных звеньев и системы питания. Осталось только пару слов сказать о входном фильтре. Он может быть достаточно простым, поскольку у нас нет надобности в особенно высокой избирательности. На практике удобнее всего оказывается обычный Т-образный фильтр 3-го порядка (два конденсатора и одна индуктивность), вносящий относительно небольшое затухание в полезный сигнал.
Наконец мы можем построить полную блок-схему нашего будущего усилителя. Она представлена на рис. 6.4.
Рис.6.4. Блок-схема антенного усилителя
- Глава 1. О транзисторах для начинающих 6
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования 16
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов 34
- Глава 4. Малосигнальный анализ транзисторных схем 79
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах 105
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах 168
- Введение
- Глава 1. О транзисторах для начинающих
- 1.1 Основные разновидности современных транзисторов
- 1.2. Как устроен биполярный транзистор
- 1.3. Почему биполярный транзистор может усиливать сигналы
- 1.4. Режимы работы и схемы включения биполярных транзистров
- 1.5. Классы усиления
- Глава 2. Электронные усилители на транзисторах: основные виды, параметры, характеристики и принципы проектирования
- 2.1. Виды транзисторных усилителей
- 2.2. Основные задачи проектирования транзисторных усилителей
- 2.3 Применяемые при анализе схем обозначения и соглашения
- 2.4. Статистические характеристики
- 2.5. Статические и дифференциальные параметры транзисторов
- 2.6. Основные параметры усилителей
- 2.7. Обратные связи в усилителях
- Глава 3. Принципы и схемы обеспечения заданного положения рабочей точки транзисторов
- 3.1. Понятие рабочей точки
- 3.2. Критерии выбора положения исходной рабочей точки
- 3.3. Нагрузочная характеристика усилительного каскада
- 3.4. Простейшие способы установки исходной рабочей точки
- С хема с общим эмиттером
- 3.5. Обеспечение устойчивости рабочей точки при влиянии внешних дестабилизирующих факторов
- Метод параметрической стабилизации
- Стабилизация параметров транзисторных каскадов с помощью цепей обратной связи
- 3.6. Практический расчет и особенности схемотехники реальных устройств Порядок расчета цепей смещения
- Особенности реализации цепей смещения в реальных радиоэлектронных устройствах
- Комбинированные цепи смещения с источниками и стабилизаторами тока и напряжения
- Глава 4. Малосигнальный анализ транзисторных схем
- 4.1. Представление усилительных каскадов в виде активных линейных четырехполюсников
- 4.2. Дифференциальные параметры транзистора четырехполюсника
- 4.3. Эквивалентная схема транзисторов-четырехполюсников
- 4.4 Низкочастотные дифференциальные параметры транзистора четырехполюсника
- 4.5. Виды эквивалентных схем, методы построения эквивалентных схем с действительными параметрами составляющих элементов
- 4.6. Гибридная высокочастотная эквивалентная схема биполярного транзистора
- 4.7. Физические эквивалентные схемы биполярных транзисторов
- Глава 5. Простейшие усилительные каскады на биполярных транзисторах
- 5.1. Схемотехника усилительных каскадов на биполярных транзисторах
- Усилители низкой частоты
- Усилители высокой частоты
- Усилители в интегральном исполнении
- 5.2. Схема с общим эмиттером Типовое схемное решение усилительного каскада с оэ и его анализ
- Анализ влияния оос по току нагрузки на параметры каскада
- Усилительный каскад с оос по напряжению
- Следящая обратная связь
- Усилительный каскад с транзисторной обратной связью
- 5.3. Схема с общей базой Типовое схемное решение усилительного каскада с об и его анализ
- Усилительный каскад по схеме с об с трансформаторной обратной связью
- 5.4. Схема с общим коллектором Типовое схемное решение усилительного каскада с ок и его анализ
- Глава 6. Практические примеры разработки усилительных каскадов на биполярных транзисторах
- 6.1. Основные этапы процесса проектирования
- 6.2.Низкочастотный микшер Постановка задачи
- П остроение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.3. Антенный усилитель диапазона дмв Постановка задачи
- Построение развернутой блок-схемы
- Выбор элементной базы и построение полной принципиальной схемы
- Расчет параметров всех элементов
- Разработка конструктивного исполнения, сборка и настройка
- 6.4. Краткий обзор нескольких простых схем
- Фазовращатель на основе типового усилительного каскада с 0э (ок)
- Низкочастотный усилитель с включением регулятора громкости в цепь оос
- Приемник прямого усиления
- Включение двойного балансного смесителя на выходе усилительного звена с оэ (ок)
- Приставка к узч для обеспечения псевдоквадрафонического звучания
- Ускорение включения транзисторных усилителей
- Список литературы