4.7. Исследование устойчивости по линейному приближению.
В некоторых случаях устойчивость состояния равновесия нелинейной системы можно исследовать по уравнениям первого приближения, полученным в результате линеаризации уравнений состояния в малой окрестности точки равновесия. Данный способ был предложен A.M. Ляпуновым.
Рассмотрим этот подход для нелинейной автономной стационарной системы
, , . (7)
Разложим f(x) в ряд Тейлора в малой окрестности состояния равновесия:
, (8)
где R(x) - члены ряда разложения выше первой степени; матрица частных производных имеет вид
. (9)
Отбрасывая члены ряда разложения R(x), вместо (8) получим
. (10)
Матрица частных производных (9) рассматривается в точке равновесия, поэтому представляет собой числовую матрицу коэффициентов (якобиан), для которой введем обозначение
. (11)
С учетом (11) окончательно уравнение первого приближения системы (10) принимает вид
, (12),
т. е. соответствует описанию линейной автономной системы.
Согласно теореме, доказанной A.M. Ляпуновым, устойчивость исходной системы (7) связана с устойчивостью линеаризованной системы (12).
Теорема.
Если линеаризованная система устойчива, то исходная нелинейная система будет асимптотически устойчивой «в малом» относительно исследуемого состояния равновесия.
При неустойчивой линеаризованной системе процессы в исходной нелинейной системе будут также неустойчивыми.
Если линеаризованная система находится на границе устойчивости (корни нулевые или мнимые), то об устойчивости нелинейной системы ничего нельзя сказать. Это критический случай, и нужны дополнительные исследования для окончательного суждения об устойчивости нелинейной системы (7), которую определяют члены высшего порядка ряда разложения R(x).
Пример 1.
По линейному приближению оценить устойчивость относительно одного из положений равновесия системы, математическая модель которой имеет вид
u=0.
Запишем уравнения равновесия системы
откуда определим одну из точек равновесия: . В ее малой окрестности линеаризуем исходную систему
которая примет вид
Матрица линеаризованной системы следующая:
.
Запишем для нее характеристическое уравнение
.
Как видим, линеаризованная система неустойчива, следовательно, исходная система также неустойчива.
- Лекция 19
- Опустить
- 3. 20. Структурная схема цифровой системы с обратной связью.
- Лекция 20
- 3. 21. Передаточные функции цифровой системы управления с обратной связью.
- Лекция 21
- 3. 22. Уравнения цифровой системы с обратной связью.
- 3. 23. Анализ цифровых систем с обратной связью (замкнутых цифровых систем). Анализ устойчивости.
- Опустить
- 3. 24. Анализ точности цифровых систем управления в установившемся режиме.
- 3. 25. Метод, базирующийся на теореме о конечном значении z- преобразования.
- 3. 26. Аналитический метод синтеза (метод размещения полюсов и нулей системы), основанный на моделях типа "вход-выход"
- Исходные данные
- Постановка задачи синтеза.
- Решение задачи.
- Лекция 22
- 3.27. Размещение полюсов замкнутой цифровой системы с помощью обратной связи по состоянию
- 3.28. Цифровой (дискретный) лкр-регулятор
- 3.29. Цифровой наблюдатель состояния
- 3.31. Цифровой лкг-регулятор (Цифровое линейно-квадратичное гауссовское управление)
- 3.32. Восстановление свойств замкнутой системы.
- Лекция 23 Читать
- 4. Нелинейные системы управления.
- 4. 1. Модели нелинейных систем управления
- 4. 2. Пространство состояний.
- 4. 3. Структурная расчетная схема нелинейной системы.
- Лекция 23
- 4. 4. Особенности процессов в нелинейных системах.
- 4. 5. Устойчивость нелинейных систем.
- 4.6. Понятие об устойчивости состояния равновесия.
- 4.7. Исследование устойчивости по линейному приближению.
- Лекция 24
- 4.8. Второй метод Ляпунова.
- Теоремы второго метода Ляпунова
- Пассивность
- 4.10. Частотный способ анализа устойчивости.
- 4. 6. Анализ процессов в нелинейных системах.
- Метод фазовой плоскости.
- Метод гармонического баланса.
- 1. Основные сведения.
- Лекция 25
- 2. Метод гармонической линеаризации.
- 3. Основное уравнение метода гармонического баланса.
- 4. Способ Гольдфарба.
- 5. Коррекция автоколебаний.
- 6 . Условия применимости метода гармонического баланса.
- 7. Насыщение исполнительного устройства
- Выбор постоянной времени слежения
- 8. Синтез нелинейной следящей системы методом линеаризации обратной связью
- 2.1. Линеаризация вход-состояние
- 2.2. Линеаризация вход-выход
- 2.3. Внутренняя динамика
- 2.4. Нуль-динамика
- 9. Синтез нелинейной следящей системы с помощью скользящего управления