4.12.1 Фильтровые системы сдц
Фильтровые системы СДЦ используются при высоких требованиях к помехозащищенности РЛС в условиях ПП. В этом случае РЛС, как правило, работает в режиме истинной внутренней когерентности и система СДЦ представляет собой режекторный фильтр (РФ) с АЧХ вида
Kрф(f) = С1/[Nо + Nпп(f)],
где С1 − постоянный коэффициент, Nпп(f) и Nо − спектральная плотность мощности пассивных помех и внутреннего шума приемника.
Такая характеристика называется гребенчатой, а РФ − гребенчатым фильтром подавления (ГФП) (см.рис.4.70).
Рис.4.70. АЧХ гребенчатого фильтра накопления (а) и АЧХ гребенчатого фильтра подавления (б)
Структура системы обработки сигналов с фильтровой СДЦ определяется способом накопления отраженных сигналов как важнейшего этапа оптимальной фильтрации. При некогерентном накоплении она имеет вид, представленный на рис.4.71,а, при когерентном − на рис.4.71,б.
При когерентном накоплении отраженных сигналов, принципиальная возможность которого появляется в случае использования истинной когерентности, роль ГФП могут выполнять устройства нормировки сигналов скоростных каналов с коэффициентом передачи Ki = 1/PПП вых i (здесь PППвыхi − мощность сигналов ПП на выходе i-го скоростного канала). В качестве таких устройств могут применяться схемы ШАРУ.
Использование устройств нормировки исключает необходимость применения систем компенсации действия ветра (СКДВ).
Рис.4.71. Системы обработки с фильтровой системой СДЦ
Некогерентное накопление используется с целью упрощения технической реализации системы обработки в случае, когда нет необходимости в использовании информации о скорости.
Гребенчатые фильтры подавления могут быть выполнены на линиях задержки с числом отводов через tз = Tп, равным числу импульсов в пачке М (М − число скоростных каналов численно равное числу импульсов в пачке), либо в виде последовательно соединенных РФ с заданной полосой режекции Пр и разносом по частоте, кратным Fп. Количество таких фильтров Пи/Fп ≈ Q (здесь Q − скважность импульсов).
Компенсация действия ветра осуществляется путем включения СКДВ на входе ГФП.
Скоростной канал представляет собой гребенчатый фильтр накопления (ГФН), настроенный на соответствующую доплеровскую частоту. Такой фильтр также может быть выполнен либо на ЛЗ с отводами (рис.4.72,а), либо на узкополосных фильтрах с полосой пропускания Пф ≈ Fп/M и разносом по частоте, кратным Fп (рис.4.72,б).
Рис.4.72. Схема гребенчатого фильтра накопления на линии задержки с отводами (а) и на узкополосных фильтрах (б)
Количество узкополосных фильтров для реализации одного ГФН должно быть равным Пи/Fп ≈ Q, а число скоростных каналов в системе обработки равно числу импульсов в пачке М.
Вапервом случае комплексные коэффициенты передачи выбираются таким образом, чтобы обеспечить подавление сигналов пачки из M импульсов. Это становится возможным при значениях argKi = 0 для i = 2m и для arg Ki = π для i = 2m+1, где m = 0, 1, 2...
Во втором случае полоса режекции Пр = 1/(МТп), а количество таких фильтров Пи/Fп ≈ Q (здесь Q − скважность импульсов). В обоих случаях принципиально необходимым является применение устройства компенсации действия ветра, которое включается на входе ГФН.
Важным достоинством режекторного фильтра (как подавителя системы СДЦ) является сохранение информации о дальности. Это связано с пропусканием широкого спектра частот сигнала, что сохраняет его импульсную структуру и позволяет судить о дальности по временному положению импульсов.
Однако при техническом воплощении ГФН возникает ряд технических трудностей. Особенно это относится к РЛС большой дальности действия, с низкой частотой повторения импульсов. Кроме того, для получения нужной частотной характеристики гребней ГФН требуется несколько достаточно совершенных устройств памяти (УЛЗ или потенциалоскопов), а также цепь обратной связи, что заметно усложняет схему устройства.
Нужную частотную характеристику «зуба» режекции проще получить с помощью обычного («дискретного») фильтра частотной селекции, полоса пропускания которого не меньше Fп/2 (сплошная линия на рис.4.73). Такой фильтр позволяет выделить лишь одну спектральную линию, положение которой определяется доплеровской частотой.
Рис.4.73. Частотная характеристика фильтра
Таким образом, суммарное количество узкополосных фильтров, потребное для реализации всех ГФН равно МQ. Эти фильтры настраиваются на разные частоты с разносом, равным Fп/М. Добротность их, особенно при работе системы СДЦ на промежуточной частоте, должна быть очень высокой. Например, при fпр= 30 МГц, M = 10, Fп = 300 Гц она составляет Qф = fпр/Пф ≈ 106. Такую высокую добротность можно обеспечить только лишь в пъезокерамических фильтрах.
Таким образом, сложность технической реализации как самой фильтровой системы СДЦ, так и РЛС в целом, является основным препятствием к широкому практическому применению таких систем.
- 4.3 Требования к динамическому диапазону приемного тракта и технические решения, обеспечивающие их выполнение
- 4.3.1 Согласование динамических диапазонов элементов приемного тракта
- 4.3.2 Шумовая автоматическая регулировка усиления
- 4.3.3 Усилители с логарифмической амплитудной характеристикой
- 4.4 Технические решения, обеспечивающие помехозащиту рлс методами пространственной и поляризационной селекции
- 4.4.1 Уменьшение угловых размеров главного лепестка дна и снижение уровня боковых лепестков
- 4.4.2 Уменьшение уровня приема в направлении на постановщик ашп
- 4.5 Устройства защиты рлс от импульсных помех
- 4.5.1 Устройства защиты от узкополосных импульсных помех
- 4.5.2 Устройства защиты от широкополосных импульсных помех
- 4.5.3 Устройства защиты от нип
- 4.5.4 Особенности построения устройств защиты от ответных импульсных помех
- 4.6 Пути повышения помехозащищенности рлс в условиях пассивных помех
- 4.6.1 Основные отличия целей и маскирующих пассивных помех
- 4.6.2 Основные пути повышения помехозащищенности рлс
- 4.6.3 Выбор структуры зондирующего сигнала при работе рлс в условиях пассивных помех
- 4.7 Влияние пассивных помех на боевые возможности рлс
- 4.7.1 Методика определения возможностей рлс (рлк) по обнаружению воздушных объектов в условиях пассивных помех
- 4.8 Обобщенная структурная схема системы сдц
- 4.8.1 Структурная схема систем сдц
- 4.8.2 Основные характеристики системы сдц
- 4.9 Устройства селекции движущихся целей
- 4.9.1 Устройства сдц с эквивалентной внутренней когерентностью с чпв на видеочастоте
- 4.9.2 Устройства сдц с внешней когерентностью с чпв на видеочастоте
- 4.9.3 Устройства сдц с чпв на промежуточной частоте
- 4.10 Принципы построения элементов и устройств системы сдц
- 4.10.1 Ограничитель
- 4.10.2 Фазовый детектор
- 4.10.3 Устройство формирования опорного напряжения
- 4.10.4 Устройство череспериодной компенсации
- 4.10.5 Устройство чпк на вычитающих потенциалоскопах
- 4.10.6 Влияние нестабильностей аппаратуры на эффективность систем сдц
- 4.11 Системы сдц на базе автокомпенсаторов
- 4.11.1 Структурная схема чпак
- 4.11.2 Основные характеристики чпак
- 4.12 Фильтровые и корреляционно-фильтровые системы сдц
- 4.12.1 Фильтровые системы сдц
- 4.12.2 Корреляционно-фильтровые системы сдц
- 4.12.3 Основные характеристики фильтровых и корреляционнофильтровых систем сдц
- 4.13 Дискретно-аналоговые и цифровые системы сдц
- 4.13.1 Дискретно-аналоговые системы сдц
- 4.13.2 Цифровые системы сдц
- 5. Обработка радиолокационной информации
- 5.1 Первичная обработка радиолокационной информации
- 5.1.1 Задачи, решаемые при обработке рли
- 5.1.2 Сравнительная характеристика аналоговых и цифровых методов обработки
- 5.1.3 Обобщенная структурная схема системы цифровой обработки информации
- 5.2 Принципы построения устройств преобразования радиолокационных сигналов в цифровую форму
- 5.2.1 Устройства дискретизации аналоговых сигналов
- 5.2.2 Устройства квантования
- 5.2.3 Аналого-цифровые преобразователи, их параметры и основные типы
- 5.3 Принципы построения цифровых обнаружителей радиолокационных сигналов
- 5.3.1 Цифровые обнаружители радиолокационных сигналов при бинарном квантовании
- 5.3.2 Цифровые обнаружители радиолокационных сигналов при многоуровневом квантовании
- 5.4 Цифровые измерители координат воздушных объектов
- 5.4.1 Цифровые измерители дальности и азимута
- 5.4.2 Измерение доплеровской частоты сигнала
- 5.5 Вторичная обработка радиолокационной информации
- 5.5.1 Существо процедур вторичной обработки рли
- 5.5.2 Стробирование и селекция отметок в стробах
- 5.5.3 Оценка параметров траекторий
- 5.5.3.1 Сглаживание и экстраполяция при вторичной обработке
- 5.5.3.2 Алгоритм фильтрации параметров траектории по методу максимального правдоподобия
- 5.5.4 Оптимальное последовательное сглаживание координаты и скорости ее изменения
- 5.5.5 Последовательное сглаживание скорости и курса. Выявления маневра воздушного объекта
- 5.5.6 Обнаружение и сопровождение траекторий воздушных объектов в обзорной рлс
- 5.5.6.1 Структурная схема алгоритма обнаружения траекторий
- 5.5.6.2 Структурная схема алгоритма сопровождения траекторий
- 5.5.7 Полуавтоматическое сопровождение траекторий воздушных объектов
- 5.6 Радиолокационное распознавание
- 5.6.1 Классификация методов и показателей качества радиолокационного распознавания
- 5.6.2 Оценка вероятности правильного распознавания
- 5.6.3 Методы и техника радиолокационного распознавания
- 5.6.3.1 Методы радиолокационного распознавания
- 5.6.3.2 Техника распознавания, проблемы ее реализации
- 6. Дополнительные системы рлс
- 6.1 Индикаторные устройства рлс и их основные характеристики
- 6.1.1 Назначение и классификация индикаторных устройств
- 6.1.2 Влияние индикаторов на характеристики рлс
- 6.2 Принципы построения индикаторов обзорных рлс
- 6.2.1 Функциональный состав индикатора
- 6.2.2 Ико с вращающимися отклоняющими системами
- 6.2.3 Индикатор кругового обзора с неподвижной отклоняющей системой
- 6.3 Принципы построения системы отображения радиовысотомера
- 6.3.1 Способы построения индикаторов измерения высоты
- 6.3.2 Функциональная схема индикатора измерения высоты
- 6.4 Системы передачи и формирования масштабных отметок азимута рлс ртв
- 6.4.1 Принципы построения систем передачи азимута рлс ртв
- 6.4.2 Принципы построения систем формирования масштабных отметок азимута рлс ртв
- 6.5 Системы вращения антенн рлс ртв
- 6.5.1 Назначение, режимы работы, классификация систем вращения антенн и основные тактико-технические требования, предъявляемые к ним
- 6.5.2 Принципы построения основных типов систем вращения
- 7. Принципы построения и функционирования систем имитации, контроля и управления
- 7.1 Система имитации сигналов и помех. Общие сведения о системе имитации
- 7.1.1 Задачи решаемые системой имитации и ее роль в составе аппаратуры рлс
- 7.1.2 Требования, предъявляемые к имитатору и его основные особенности
- 7.1.3 Краткая характеристика имитируемых сигналов
- 7.2 Состав, структура и принципы функционирования имитатора
- 7.3 Блок имитации эхо-сигналов и активных помех (111-01). Назначение, состав, принцип работы
- 7.3.1 Назначение и состав блока
- 7.3.2 Фоpмиpователь сигналов ц1
- 7.3.3 Фоpмиpователь сигналов ц2
- 7.3.4 Формирователь шумовых помех гш2
- 7.3.5 Формирователь несинхронных и синусоидальных помех
- 7.3.6 Распределитель сигналов
- 7.4 Блок имитации пассивных помех (111-02). Назначение, состав, принцип работы
- 7.4.1 Имитатор отражений от облака дипольных помех (формирователь пп)
- 7.4.2 Имитатор отражений от местных предметов (формирователь мп)
- 7.5 Блок формирования контрольных сигналов (111-03). Назначение, состав, принцип работы
- 7.5.1 Назначение и состав блока
- 7.5.2 Формирователь шумовых помех гш1
- 7.5.3 Формирователь сигналов контрольной цели
- 7.5.4 Формирователь сигналов контрольного местного предмета
- 7.5.5 Устройство коммутации и распределения сигналов
- 7.5.6 Формирователи сигналов спл и фап
- 7.6 Вспомогательные блоки системы имитации. Назначение, принцип работы
- 7.6.1 Блок преобразования частоты (114-01)
- 7.6.2 Блоки фазовращателей (115-04, 115-05)
- 7.6.3 Блок управления имитатором (112-01)
- 7.6.4 Блок кодирования (072-03) и блок декодирования (072-04) команд управления фазовращателями
- 7.7 Система контроля. Общие сведения о системе контроля
- 7.7.1 Назначение и состав системы контроля
- 7.7.2 Режимы работы подсистемы автоматического контроля и диагностирования
- 7.7.3 Режим непрерывного контроля
- 7.7.4 Режим функционального контроля
- 7.7.5 Режим диагностического контроля
- 7.8 Аппаратура диагностирования
- 7.8.1 Принципы построения и функционирования аппаратуры диагностирования
- 7.8.2 Принципы построения и работы периферийных устройств контроля
- 7.8.3 Принципы построения блока диагностирования
- 7.9 Системы управления и сопряжения с внешними системами
- 7.9.1 Назначение, состав, принцип работы системы управления
- 7.9.2 Блок программного включения кабины пд (081-03). Назначение, принцип работы
- 7.9.3 Блок управления приемо-передающей аппаратурой (081-01). Назначение, принцип работы
- 7.9.4 Технический пульт управления (081-02). Назначение, принцип работы
- 7.10 Общие сведения о системе дистанционного управления
- 7.10.1 Назначение, состав и принцип работы системы дистанционного управления
- 7.10.2 Оперативный пульт управления рлс (071-01). Назначение, принцип работы
- 8. Перспективы развития радиоэлектронной техники ртв
- 8.1 Перспективные направления развития радиолокации
- 8.2 Перспективные направления развития систем и устройств радиолокационных станций ртв
- Литература
- Оглавление