Электромеханические и магнитные усилители
Электромеханические усилители выполняют в виде электромашинных усилителей (ЭМУ) или электромагнитных реле.
Электромашинные усилители — специальные электрические генераторы постоянного тока, выходная мощность которых регулируется путем изменения мощности управления. Конструктивно электромашинные усилители выполняют в виде установки, в корпусе которой располагаются асинхронный электродвигатель и генератор.
Электромашинные усилители допускают значительные форсировки по току и по напряжению, имеют малую мощность управления и хорошее быстродействие.
Однако электромашинные усилители имеют невысокую надежность из-за наличия подвижных контактов между щетками и коллектором, создают большие помехи для работы радиоаппаратуры, имеют относительно большие размеры и массу.
В электромагнитных реле получаемый управляющий сигнал подают на каТушку, в результате чего замыкаются контакты, способные пропускать ток большей мощности. Усилители подобного типа позволяют увеличивать энергию входного сигнала в 1000 раз, существенно упростить схему управления и повысить ее стабильность по отношению к изменениям температуры окружающей среды. Они получили широкое распространение в системах автоматического регулирования (стабилизации) температуры термических и плавильных печей.
Магнитные усилители представляют собой электромагнитное устройство, в котором связь выхода и входа осуществляется через магнитное поле. В основу принципа его действия положена нелинейная зависимость магнитной проницаемости ферромагнитных материалов от напряженности постоянного подмагничивающего поля, созданного или изменяемого входным сигналом.
Магнитные усилители подразделяют на простые и с самонасы- щением. У первых по рабочем обмоткам протекает только переменный ток, а в усилителях второй группы по рабочим обмоткам протекает ток, содержащий постоянную составляющую.
Основными параметрами магнитных усилителей являются характеристики управления, т. е. взаимосвязь между установившимися значениями входной и выходной величин, например между рабочим током нагрузки и током управления.
Простейший магнитный усилитель — усилитель дроссельного типа (рис. 13, а). Он представляет собой катушку индуктивности 1 с ферромагнитным магнитопроводом 2 и дополнительной управляющей обмоткой 3. Нагрузка усилителя /?н включена последовательно с рабочей обмоткой, питание которой осуществляется переменным током ио.
При изменении входного напряжения С/вх будет изменяться подмагничивающее постоянное поле и магнитная проницаемость ;х ферромагнитного магнитопровода, а следовательно, и индуктивность рабочей обмотки. В результате будет меняться ток выходной цепи.
Таким образом, устройство магнитных усилителей основано на использовании непостоянства магнитной проницаемости ферромагнетика, т. е. нелинейности индуктивного сопротивления дросселя.
Входное напряжение £/вх может меняться не только по амплитуде, но и по знаку. Необходимо лишь, чтобы частота вход- кого напряжения была значительно (в 5—10 раз) меньше частоты источника питания 1/0. Тогда интенсивность входного сигнала будет определять амплитуду тока в цепи нагрузки и изменение входного сигнала во времени будет соответствовать изменению огибающих этих амплитуд. Таким образом, магнитный усилитель одновременно является модулятором, преобразующим сколь угодно медленно меняющееся напряжение на входе в изменения огибающих выходного напряжения.
Рассмотренная простейшая схема дроссельного магнитного усилителя практически не применяется, так как переменный ток, протекающий по рабочей обмотке, наводит ЭДС в управляющей обмотке. Наведенный ток попадает в цепь датчика сигнала и искажает его характеристику.
Отмеченный недостаток устраняется, если применить схему (рис. 13, б) с двумя магнитно не связанными между собой дросселями, обмотки которых соединены так, как показано на рисунке. Если входная обмотка 3 намагничивает оба магнитопровода в одном направлении, то выходная обмотка — в разных. Благодаря этому взаимно компенсируются ЭДС, наведенные во входных обмотках. '
Трехстержневая схема магнитопровода приведена на рис. 13, в. В этом случае во входной обмотке также не будет наводиться ЭДС трансформации, так как соответствующие составляющие переменного потока взаимно уничтожаются и будут отсутствовать в среднем стержне. Рассмотренная схема находит применение благодаря удобству изготовления и возможности размещения большого числа витков.
С повышением частоты источника питания размеры магнитных усилителей уменьшаются, но одновременно растут потери в ферромагнетике и увеличивается магнитный поверхностный эффект.
В целом магнитные усилители являются надежными элементами автоматики, к достоинствам которых следует отнести высокую прочность при практически неограниченном сроке службы, а также в отличие от электронных ламповых усилителей мгновенную готовность к действию. Удобно и суммирование сигналов в магнитном усилителе, для этого достаточно иметь соответствующее число входных обмоток. Магнитные усилители нечувствительны к радиоактивным излучениям. Недостатки магнитных усилителей — сравнительно большая масса и значительная инерционность, обусловленная заметным количеством энергии, .запасаемой в магнитном поле дросселя.
- Глава 1. Общие сведения
- Основные понятия и определения
- Классификация систем автоматического управления
- Элементы автоматических систем
- Глава 2. Первичные преобразователи
- Потенциометрические первичные
- Индуктивные первичные преобразователи
- Емкостные первичные преобразователи
- Тензометрические первичные
- Глава 3. Усилители и стабилизаторы
- Электромеханические и магнитные усилители
- Электронные усилители
- Стабилизаторы
- Глава 4. Переключающие устройства и распределители
- Электрические реле
- Реле времени
- Глава 5. Задающие и исполнительные устройства
- Глава 6. Общие сведения об измерении и контроле
- Глава 7. Контроль температуры
- Глава 8. Контроль давления и разрежения
- Глава 9. Контроль расхода, количества и уровня
- Глава 11. Системы автоматики
- Глава 12. Автоматическая блокировка и защита в системах управления
- Глава 13. Системы автоматического контроля и сигнализации
- Глава 14. Системы автоматического
- Глава 15. Объекты регулирования и их свойства
- Глава 16. Типы регуляторов
- Глава 17. Конструкции и характеристики регуляторов
- Раздел IV
- Глава 18. Общая характеристика
- Глава 19. Математическое и программное обеспечение микроЭвм
- Глава 20. Внешние устройства микроЭвм
- Глава 21. Применение микропроцессорных систем
- Раздел V
- Глава 22. Общие сведения
- Глава 23. Конструкции промышленных роботов
- Глава 25. Роботизация промышленного производства
- Раздел IV
- Глава 1н, общая характеристика микропроцессорных
- 4. Гидравлические и пневматические