Глава 20. Внешние устройства микроЭвм
-
КЛАССИФИКАЦИЯ ВНЕШНИХ УСТРОЙСТВ
По своему назначению внешние устройства подразделяются на устройства подготовки машиночитаемых носителей информации, устройства ввода-вывода информации, а также носители больших объемов данных (внешние накопители). Все перечисленные устройства могут использовать различные носители информации: перфокарты, перфоленты, бумажные рулоны, магнитные ленты и т. д.
К устройствам подготовки данных относятся перфоратор (карточный), ленточный перфоратор, а также различные виды счетно-перфорационных машин.
Устройства ввода-вывода информации могут быть однофункциональными и многофункциональными. Однофункциональные устройства используют либо на ввод информации, либо только на вывод. В многофункциональных устройствах функции ввода и вывода информации совмещены, т. е. они используются как для ввода информации, так и для ее вывода.
К внешним накопителям относятся накопитель на магнитной ленте, накопитель на магнитном диске, накопитель на магнитных картах.
В зависимости от способа обмена информации с ЭВМ внешние устройства различаются на дискретные и непрерывные.
Дискретные, или стартстопные, устройства после каждого запроса ввода-вывода передают определенную часть информации и возвращаются в исходное состояние. Так, например, работает телетайп.
Непрерывные устройства по одному запросу на ввод-вывод передает или принимает большой массив информации. Типичными представителями непрерывных устройств являются накопители на магнитных лентах или дисках.
-
ВНЕШНИЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА
Для запоминания и хранения больших массивов данных в ЭВМ используются запоминающие устройства, основанные на принципе записи на движущийся магнитный носитель. Среди них наибольшее распространение получили накопители на магнитных лентах, дисках и картах.
Накопитель на магнитной ленте представляет собой устройство с последовательным доступом. Информация записывается при движении магнитной ленты под головкой, в обмотку которой поступает ток, сила которого достаточна для насыщения магнитного материала в том или ином направлении. Во время считывания изменение магнитного потока индуцирует в обмотке воспроизводящей головки электрический ток, соответствующий записанной информации.
Согласно международному стандарту в накопителях используют девятидорожечные магнитные ленты шириной 12,7 мм и длиной 750 м.
Накопители на магнитной ленте при наличии сменных каСсет обладают практически неограниченной емкостью памяти, обеспечивают возможность обмена носителей между вычислительными центрами и высокую скорость обмена информации, имеют наиболее низкое отношение стоимости к информационному объему. Недостатками накопителей на магнитной ленте является малая надежность из-за возможности нарушений покрытий ленты и износа головок.
Устройства на магнитных дисках предназначены для хранения больших массивов информации. На дисках записывается операционная система вычислительной машины, библиотека программ, программы и т. п.
Носители информации — магнитные диски — обычно изготовляются из алюминия и имеют ферролаковое или кобальтвольфра- мовое покрытие толщиной 2 мкм. Сам диск имеет толщину 1,27 мм. На обеих сторонах диска информация записывается по концентрическим магнитным дорожкам. Из дисков набираются пакеты.
В отличие от накопителей на магнитной ленте запись на диске осуществляется бесконтактным способом. Магнитные головки как бы «плавают» на воздушной подушке на расстоянии 2,5 ... 3 мкм от поверхности диска. Воздушная подушка создается потоком воздуха, увлекаемого поверхностью диска.
В мини- и микроЭВМ используются как стационарные дисковые пакеты, так и накопители на съемных и гибких дисках. В настоящее время разработан большой набор дисковых устройств с емкостью до 100 Мбайт для съемных и до 500 Мбайт — для стационарных дисковых накопителей. Различают гибкие магнитные диски размером 5 дюймов (диаметр диска 130 мм) и 8 дюймов (диаметр диска 200 мм).
В последние годы был разработан новый тип внешних запоминающих устройств большой емкостью с высокой экономичностью, т. е. накопитель на магнитной карте.
Магнитная карта представляет собой пластину из трехслойной композиции на основе пластмассы. Карта размером 356x83 мм изготовляется из полиэфирной смолы и имеет толщину 120 мкм. На пластину в виде узких полосок наносится магнитный слой толщиной 12 мкм. Затем пластина покрывается защитной полиэфирной пленкой, наличие которой предохраняет магнитную карту от механического изнашивания и позволяет использовать ее до 20 тыс. раз. Запись и считывание информации осуществляются магнитными головками. Информация на карте записывается на 56 дорожках, расположенных по ширине карты.
-
УСТРОЙСТВА ДЛЯ СВЯЗИ ЭВМ —ОПЕРАТОР
Для организации оперативного взаимодействия оператор — машина используются дисплеи, устройства посимвольной и построчной печати, телетайпы, устройства считывания с перфолент и перфокарт, графопостроители и т. п.
Дисплей — устройство отображения информации на экране электронно-лучевой трубки. По способу представления информации на экране дисплеи подразделяются на алфавитно-цифровые и графические. Алфавитно-цифровые дисплеи используют для вывода текстовой и цифровой информации, а графические — для представления на экране сложных графических форм.
Устройство отображения, т. е. терминалы, построенные на основе дисплеев, позволяют оперативно выводить алфавитно- цифровую и графическую информацию в ЭВМ с помощью клавиатуры или светового пера. Его работой управляет микропроцессор.
Устройства построчной и посимвольной печати используются для вывода информации. Непосредственное нанесение символьной и числовой информации на бумажный носитель позволяет оператору легко воспринимать результаты работы ЭВМ без каких-либо преобразователей.
По методу нанесения печатных знаков на носитель информации печатающие устройства делятся на устройства ударного действия и регистрирующие устройства безударного действия.
В печатающих устройствах ударного действия изображение символа цифровой или символьной информации формируется в результате механического удара печатающего молоточка по шрифтоносителю с одновременным нанесением красящего вещества, например ударом через красящую ленту. В безударных печатающих устройствах для нанесения символьной и цифровой информации используют фотографические, фототермические, электрохимические и другие методы регистрации.
По принципу работы печатающие устройства подразделяются на два типа: построчные печатающие устройства и печатающие устройства с последовательной печатью каждого символу.
Принцип построения построчного печатающего устройства с непрерывно вращающимся шрифтоносителем в виде совокупности печатающих колес 4 показан на рис. 154, а. По окружности колеса нанесены все символы, выполненные в виде выпуклых фигур. Отпечатки символов остаются на носителе информации 2 при ударе печатающего молоточка 1 через бумагу и красящую ленту 3 по какой-либо фигуре (символу) на печатающем колесе. За один
В
/ ППГТ ППП I --ЛПП ГПП
В)
Рис. 154. Принцип построения построчного печатающего устройства:
о — о вращающимся шрифтоносителем; б — кепочного типа
оборот печатающего колеса можно напечатать всю строку. Бумажный носитель останавливается во время нанесения символов строки.
В печатающем устройстве цепочного типа (рис. 154, б) цепь 5, на которую нанесены символы, движется в горизонтальном направлении. Отпечаток на бумажном носителе 2 образуется при ударе одного из молоточков 1, возбуждаемого механизмом привода, через бумагу 2 и красящую ленту 3 по какой-либо фигуре (символу).
Основу печатающих устройств с последовательной печатью символов составляют электрифицированные пишущие машинки и телетайпы.
Телетайпы применяют в системах ввода-вывода информации ЭВМ из-за их простоты и возможности работы с каналами связи при передаче информации на большие расстояния. Они обладают такими же характеристиками, как и электрифицированные машинки.
Перфокарты и перфоленты являются носителями информации, которые обладают достаточной емкостью, долговечностью и возможностью многоразового использования. Устройства, работающие с перфокартой и перфолентой, осуществляют подготовку исходных данных и программ для ввода в ЭВМ, ввод данных в ЭВМ, а также вывод из нее результатов выполнения программ и другой информации.
Для ввода-вывода графических данных в ЭВМ в настоящее время применяют графические дисплеи и графопостроители.
/ г а — планшетный; 6 — рулонный
Применение шаговых двигателей 2 обусловлено простотой управления с помощью цифровой информации.
Кроме перечисленных устройств для связи человека с ЭВМ также используются различные вспомогательные средства: функциональные кнопки, ручки управления, программируемая клавиатура и др.
-
ВНЕШНИЕ УСТРОЙСТВА СВЯЗИ ЭВМ
С ОБЪЕКТОМ
Устройства связи ЭВМ с объектом управления служат для ввода в машину информации, поступающей от первичных преобразователей, установленных на контролируемом объекте, и выводе из машины информации, предназначенной для автоматического управления объектом. В соответствии с назначением устройства связи с объектом подразделяются на две группы: устройства ввода информации от объекта управления, осуществляющие сбор информации от первичных преобразователей, и устройства воздействия на регуляторы и исполнительные механизмы.
Как правило, контролируемые параметры управляемых объектов являются непрерывными величинами, а ЭВМ имеет дело с числами и может воспринимать изменение параметров в виде их дискретных значений. Следовательно, на входе и выходе ЭВМ должны использоваться устройства, преобразующие в первом случае непрерывные данные в цифровые величины, а во втором — цифровые величины в непрерывные управляющие сигналы.
Наибольшее распространение получили преобразующие устройства перехода от напряжения к эквивалентным двоичным числам И устройства, осуществляющие обратные преобразования, называемые аналого-цифровыми и цифроаналоговыми преобразователями соответственно.
Рис. 156. Структурная схема аналого-цифрового преобразователя
генератор 1 пилообразного напряжения и генератор 3 импульсов не работают, а счетчик 4 импульсов «очищен». При подаче пускового сигнала на вход генератор 1 вырабатывает напряжение пилообразной формы (прямолинейное возрастание напряжения от нуля до определенного уровня и затем мгновенный сброс до нуля) и подает его на схему сравнения 2. До тех пор пока напряжение «пилы» не сравнится с напряжением импульсов от генератора 3, импульсы поступают в счетчик 4, который считывает их и преобразует в двоичный код. Как только разность напряжения «пилы» и измеряемого напряжения станет равной нулю, схема сравнения вырабатывает импульс, выключающий генератор импульсов 3. Число импульсов, выработанных генератором импульсов до отключения, пропорционально измеряемому входному сигналу.
Входным сигналом могут служить усиленные сигналы термоэлектрических преобразователей, с помощью которых измеряются технологические параметры (температура, давление) и т. д.
Преобразование кода в аналоговую величину выполняется суммированием аналоговых величин. Эти устройства подразделяются на два типа. В первом случае исходное число сначала преобразуют в число-импульсный код, т. е. в соответствующее число импульсов. Каждому из этих импульсов соответствует постоянное единичное приращение аналоговой величины. Все приращения суммируются, в результате чего на выходе получается аналоговая величина — эквивалент исходного кода.
Во втором случае для каждого разряда преобразуемого кода подбираются эталонные значения аналоговой величины, соответствующие «весу» данного разряда. В процессе преобразования суммируются эталоны для таких разрядов кода, в которых стоит единица. Те же разряды, которые соответствуют разрядам кода с нулевым значением, в суммировании не участвуют.
Контрольные вопросы и задания
-
Назовите основные типы внешних устройств ЭВМ и дайте им общую хар актер истику.
-
Назовите магнитные носители информации, используемые во внешних запоминающих устройствах.
-
Каковы особенности конструкции накопителя на магнитных лентах?
-
Каковы особенности конструкции накопителя на магнитных дисках?
-
Каковы особенности конструкции накопителей на магнитных картах?
-
Каковы особенности конструкции печатающих устройств ударного типа?
-
Опишите принцип действия построчных печатающих устройств.
-
Укажите основные типы графопостроителей.
-
Какие преобразователи применяют для связи ЭВМ — объект?
-
Каков принцип преобразования напряжения в машинный код?
- Глава 1. Общие сведения
- Основные понятия и определения
- Классификация систем автоматического управления
- Элементы автоматических систем
- Глава 2. Первичные преобразователи
- Потенциометрические первичные
- Индуктивные первичные преобразователи
- Емкостные первичные преобразователи
- Тензометрические первичные
- Глава 3. Усилители и стабилизаторы
- Электромеханические и магнитные усилители
- Электронные усилители
- Стабилизаторы
- Глава 4. Переключающие устройства и распределители
- Электрические реле
- Реле времени
- Глава 5. Задающие и исполнительные устройства
- Глава 6. Общие сведения об измерении и контроле
- Глава 7. Контроль температуры
- Глава 8. Контроль давления и разрежения
- Глава 9. Контроль расхода, количества и уровня
- Глава 11. Системы автоматики
- Глава 12. Автоматическая блокировка и защита в системах управления
- Глава 13. Системы автоматического контроля и сигнализации
- Глава 14. Системы автоматического
- Глава 15. Объекты регулирования и их свойства
- Глава 16. Типы регуляторов
- Глава 17. Конструкции и характеристики регуляторов
- Раздел IV
- Глава 18. Общая характеристика
- Глава 19. Математическое и программное обеспечение микроЭвм
- Глава 20. Внешние устройства микроЭвм
- Глава 21. Применение микропроцессорных систем
- Раздел V
- Глава 22. Общие сведения
- Глава 23. Конструкции промышленных роботов
- Глава 25. Роботизация промышленного производства
- Раздел IV
- Глава 1н, общая характеристика микропроцессорных
- 4. Гидравлические и пневматические