Глава 9. Контроль расхода, количества и уровня
-
ОБЩИЕ СВЕДЕНИЯ И КЛАССИФИКАЦИЯ ПРИБОРОВ
Одними из наиболее важных параметров технологического процесса являются количество и расход вещества. Уточним значение этих терминов.
Если под количеством вещества подразумевается объем или масса отмеренного вещества, то под расходом понимают количество вещества, проходящего непрерывно в потоке (в трубе, на транспортере и т. д.) за единицу времени.
В системе СИ объемный расход <2 измеряется в кубических метрах в секунду, а массовый М — в килограммах в секунду, иногда используют единицу — литр в секунду.
Для измерения расходов газов и жидкостей применяют приборы, называемые расходомерами.
В тех случаях, когда требуется отмерять и учитывать количество вещества, используют счетчики и весы. С их помощью ведут учет сырья и готовой продукции, электроэнергии, пара и воды.
Применяют также комбинированные приборы; в расходомеры встраивают интегрирующие (суммирующие) устройства, позволяющие вести суммарный учет вещества, израсходованного за заданный промежуток времени.
В зависимости от принципа действия приборы для измерения расхода жидкостей и газа подразделяют на расходомеры обтекания, переменного перепада давления и переменного уровня, индукционные, тахометрические и объемные.
Для измерения расхода твердых и сыпучих материалов используют механические, электрические, фотоэлектрические с ра- диоизотопными счетчиками весы и весы с ручной наводкой, а также автоматические порционные, платформенные и автомобильные, тензометрические и другие весы.
Для контроля уровня жидкости или сыпучего материала применяют приборы, называемые уровнемерами. Уровень жидкости или сыпучего материала — это высота Границы раздела жидкости или сыпучего материала и воздуха (газа), находящегося над жидкостью или сыпучим материалом, относительно условного (нулевого) отсчета. Отсчетом измерения уровня, как правило, является резервуар или бункер, в котором измеряется уровень жидкости или сыпучего материала.
Большое разнообразие объектов измерения обусловило многообразие физических принципов и средств измерений уровня, удовлетворяющих тем или иным требованиям.
Все приборы контроля уровня можно разделить по метрологическому принципу на две группы. Первую группу приборов используют для непрерывного измерения уровня и называют уровнемерами. Приборы второй группы предназначены для сигнализации о достижении заданного (контрольного) уровня, например верхнего или нижнего. Их называют сигнализаторами уровня.
-
РАСХОДОМЕРЫ
В соответствии с применяемыми методами приборы для измерения расхода подразделяют на расходомеры обтекания, переменного перепада давления, переменного уровня, индукционные, тахометрические и объемные. Последние чаще используют в качестве счетчиков.
Рис. 75. Ротаметры:
о)
которых выпадают осадки.
Б)
В термических и литейных цехах ротаметры применяют для измерения расхода природного газа, азота, аммиака и водорода.
а — для местного измерения; б — с электрической передачей информации; 1 — коническая трубка; 2 — поплавок
Работа расходомеров переменного перепада давления
Технические характеристики ротаметров Тип Верхний предел измерения. м*/ч Диаметр условного прохода, мм по воде по воздуху РМ-А-0,0025 0,0025 3 РМ-А-0.1ГУЗ — 0,1 3 РМ-0.016ЖУЗ 0,016 — 6 РМ-0.25ГУЗ — 0,25 6 РМ-0.16ЖУЗ 0,16 — 15 РМ-0.25ГУЗ — 0,25 15
основана на измерении перепада давления, создаваемого с помощью дросселя, в зависимости от расхода среды.
Метод измерения основан на том, что поток среды, протекающий в трубопроводе, неразрывен, и в месте установки дросселирующего сужающего устройства скорость его увеличивается. При этом происходит частичный переход потенциальной энергии давления в кинетическую энергию скорости, вследствие чего статическое давление в узком сечении будет меньше давления перед местом сужения, т. е. возникает перепад давления. Расходомер этого типа представляет собой измерительный комплекс, состоящий из трех узлов: приемного преобразователя, создающего перепад давления в зависимости от расхода среды и устанавливаемого внутри трубопровода; соединительных трубок с вспомогательными устройствами; дифференциального манометра.
В качестве устройства для создания в трубопроводе перепада давления чаще всего используются стандартные сужаюйще устройства: диафрагмы (рис. 76, а), сопла (рис. 76, б) и трубы Вентери (рис. 76, в).
а) б) в) Рис. 76 Стандартные сужающие устройства расходомеров переменного перепада давления:
а — дисковая диафрагма; б — сопло; в — труба Вентури; 1 — труба; 2 — сужающее устройство
Дифференциальные манометры, применяемые для измерения перепада давления в расходомерах, имеют неравномерную шкалу в связи с существующей квадратичной зависимостью между перепадами давления и объемным расходом.
Технические характеристики шариковых расходомеров Тнп Верхний предел измерення, Н*/ч Мини мальный расход, м*/ч ШРТ-0,1 0,1 0,025 ШРТ-0,16 0,16 0,04 ШРТ-0,25 0,25 0,062 ШРТ-0,4 0,4 0,1 ШРТ-0,6 0,6 0,15 ШРТ-1,0 1.0 0,25 ШРТ-2,5 2,5 0,62 ШРТ-4,0 4,0 1,00 ШРТ-6,0 6,0 1,5 ШРТ-10,0 10,0 2,5
Расходомеры переменного перепада давления получили наибольшее распространение в литейных и термических цехах.
Расходомеры переменного уровня предназначены для измерения расхода жидкости, находящейся под атмосферным давлением. Принцип действия этих расходомеров основан на зависимости уровня со свободным стоком жидкости от расхода.
Индукционные электромагнитные расходомеры предназначены для контроля расхода жидкостей, удельная электропроводность которых не менее 10-8 см/м. Принцип их действия основан на измерении электродвижущей силы, наводимой в электропроводной жидкости при прохождении ее через магнитное поле. Электродвижущая сила пропорциональна скорости (расходу) потока.
В тахометрических расходомерах основным элементом является крыльчатка, вращающаяся под действием потока с угловой скоростью, пропорциональной скорости потока и, следовательно, расходу.
В последние годы весьма перспективными стали шариковые и турбинные тахометрические расходомеры. Шариковые расходомеры имеют преимущества перед турбинными в простоте конструкции и высокой эксплуатационной надежности.
В шариковом расходомере (рис. 77) в качестве подвижного элемента применен шарик 3, который изготовлен из ферромагнитного материала с пластмассовым покрытием. Под действием закрученного потока шарик совершает планетарное движение, для чего используется направляющий аппарат 1, выполненный в виде многозаходного винта, помещенного в корпусе 2. При выходе из прибора поток успокаивается (сглаживается) струевыпрямителем 6, на крестовине которого закреплено ограничительное кольцо 5, удерживающее шарик. Частота вращения шарика регистрируется
Таблица 12
индуктивным преобразователем 4, частота наводимых сигналов которого пропорциональна расходу потока, и преобразуется в сигнал постоянного тока 0 ... 5 мА.
Технические характеристики некоторых видов шариковых расходомеров приведены в табл. 13.
-
СЧЕТЧИКИ ЖИДКОСТЕЙ И ГАЗОВ
В зависимости от принципа действия счетчики жидкостей и газов делят на скоростные и объемные.
Принцип действия скоростных счетчиков основан на суммировании числа оборотов помещенного в поток вращающегося устройства за какой-либо отрезок времени. По конструкции их подразделяют на счетчики с вертикальной вертушкой и счетчики с винтовой вертушкой. Первые применяют для измерения малых расходов жидкостей, а вторые — для измерения больших расходов.
Скоростной счетчик типа УВК (рис. 78) состоит из двух основных частей: измерителя скорости потока и счетной головки. Счетный механизм отделен от потока контролируемой жидкости специальной перегородкой 3. Под воздействием потока жидкости крыльчатка 5 приводится во вращение. Передача вращения от крыльчатки через редуктор 4 счетному механизму 1 осуществляется с помощью магнитной муфты 2, которая используется для отключения последнего.
К достоинствам скоростных счетчиков с вертикальной крыльчаткой относятся простота конструкции, небольшая потеря давления и низкая чувствительность к загрязнениям. Недостатками этих счетчиков являются нереверсивность действия, приводящая к одностороннему изнашиванию, и необходимость установки счетчика на горизонтальных участках трубопровода. Счетчики с вертикальной вертушкой применяют для измерения количества воды, подаваемой в цехи.
Объемные счетчики применяют для измерения количества чистых (без механических примесей) нейтральных и агрессивных жидкостей разной плотности и вязкости (например, воды, керосина, бензина, мазута и масел), а также газов. По конструкции их подразделяют на шестеренчатые и поршневые.
Наибольшее распространение получили счетчики с овальными шестернями (табл. 14).
Рис. 78. Скоростной счетчик типа УВК
Технические характеристики счетчиков жидкостей и газов Наименование Тип Класс точ ности Номи нальный расход, м*/ч Потеря давле ния, кПа Температура измеряемой среды, °С Счетчики жид ШЖУ-25П-16 0,25 : 0,5 3 —40 ... —60 кости с овальны ШЖО-60 0,5 17 20 ... 180 ми шестернями ШЖУ-40С-6 0,5 17 50 —40 ... —60 ШЖУ-65-16 0,5 17 —40 ... —50 Ротационные РГ-40 2,5 40 счетчики газов РГ-ЮО 2,5 100 РГ-250 2,5 250 0,294 5 ... 50 РГ-400 2,5 400 РГ-600 2,5 600 РГ-1000 2,5 1000
входа потока жидкости каждая из них попеременно является то ведущей, то ведомой. Для полного представления о принципе работы счетчика с овальными шестернями необходимо рассмотреть его работу (рис. 79).
В измерительной камере 1 под действием разности давлений ?! — Рг в потоке свободно вращаются две овальные шестерни 2. В положении / на левой шестерне возникает вращающий момент М, поворачивающий ее против часовой стрелки, а левая шестерня перемещает правую. В положении II момент действует и на правую шестерню. Таким образом, в положении II моменты действуют на обе шестерни. В положении III вращение правой шестерни осуществляется за счет вращения левой (аналогично положению I). Следовательно, за один оборот счетчик пропускает четыре измерительных объема 0_. Учет жидкости, протекающей через счетчик, заключается в отсчете числа оборотов шестерен. Неравномерность вращения шестерен не влияет на процесс измерения. Вращение одной шестерни с помощью магнитной муфты
Рис. 79. Счетчик с овальными шестернями
Электроконтактные датчики импульсов представляют собой рассмотренные в гл. 4 путевые выключатели, которые срабатывают при прохождении литейной формы и подают электрический сигнал на электромагнитный счетчик.
Фотоэлектрические датчики основаны на явлении фотоэффекта. Принцип их действия был рассмотрен в гл. 2.
Радиоизотопные датчики импульсов применяют в системе учета остывания отливок и нагретых изделий. Радиоизотопные датчики содержат излучатель, испускающий поток радиоактивных лучей, и воспринимающее устройство. При прохождении между ними контролируемого предмета (отливки или изделия) часть лучей поглощается, и облучение воспринимающего устройства снижается, в результате чего на его выходе появляется электрический сигнал.
Наиболее распространенными устройствами, предназначенными для измерения количества твердых сыпучих материалов, являются весы. Различают два вида весов: порционные и конвейерные. Порционные весы используют для отвеса одного или нескольких порций заданного количества вещества. Конвейерные весы служат для непрерывного определения вещества, прошедшего за заданный промежуток времени. Такие весы называют ленточными весоизмерителями и используют для определения расхода формовочной и стержневой смеси, песка и других сыпучих материалов.
Порционные весы в зависимости от назначения и конструкции подразделяют на весы с ручной наводкой, платформенные, автомобильные, автоматические.
Весы с ручной наводкой (компарирующие) используют для взвешивания небольших количеств материалов. По конструкции их делят на гиревые, циферблатные и шкальные. Такие весы называют также рычажными. К весам с ручной наводкой относят и пружинные весы, в которых измеряемая величина определяется деформацией пружины под действием веса тела.
Платформенные и автомобильные весы предназначены для измерения массы груженых вагонов и автомобилей. Платформенные весы встраивают в железнодорожные пути, а автомобильные — у ворот цеха. Они состоят из платформы и системы противовеса (гирь). Для облегчения обслуживания такие весы оборудуют дистанционным управлением.
Автоматические порционные весы применяют для взвешивания различных формовочных материалов.
Все узлы весов размещают на раме (рис. 81). На этой же раме устанавливается тарельчатый питатель, диск 5 которого приводится во вращение электродвигателем 11 через червячный редуктор 12. Формовочный материал из бункера 10 подается на вращающийся диск в питатель, откуда он снимается ножом 6 и через рукав 4 попадает в ковш 1. Для предупреждения зависания материала и его разрыхления в питателе предусмотрен лопа-
передается на счетный механизм, который имеет стрелочный указатель.
Рис. 80. Ротационный газовый счетчик
Поршневые счетчики используют в литейных и термических цехах в качестве мазу- 7 томеров.
Промышленность выпускает четырехпоршневой мазутомер типа МП, который состоит из двух узлов: гидродвигателя и измерительной головки. Гидродвигатель преобразует значение объема протекающей жидкости в пропорциональное число оборотов выходного вала, а измерительная головка суммирует их число.
Для учета объемного количества различных газов (природного, генераторного, доменного и др.) используют ротационный счетчик типа РГ (рис. 80). В корпусе 1 счетчика находятся два ротора 2, которые при вращении своими боковыми поверхностями соприкасаются с внутренней поверхностью корпуса. Механизм их вращения аналогичен механизму вращения овальных шестерен у описанных выше счетчиков жидкости. Выведенный из корпуса вал одного ротора связан кулачковой муфтой с валом редуктора, а через него — со счетным механизмом роликового типа.
-
СЧЕТЧИКИ И ВЕСЫ ТВЕРДЫХ И СЫПУЧИХ
МАТЕРИАЛОВ
В литейных цехах необходим автоматический учет форм, движущихся на литейном конвейере, и отливок, перемещающихся на пластинчатых транспортерах или по наклонным роликовым транспортерам. Система автоматического учета в этих случаях, как правило, состой-'- из устройства, выдающего механический или электрический сигнал при прохождении мимо него изделия, и счетчика, суммирующего эти сигналы.
Применяемые датчики сигналов подразделяют на механические и электрические, а счетчики — на механические и электромагнитные.
Механические датчики с рычажным приводом через кинематическую передачу воздействуют на механические счетчики, установленные в непосредственной близости от датчика. Механический счетчик представляет собой набор цифровых барабанов, связанных определенным образом между собой. На каждом барабане нанесены цифры от 0 дб 9, цифры первого барабана соответствуют количеству единиц, второго — количеству десятков, и т. д.
Таблица 15
стной рыхлитель 9. В нижней части бункера 10 имеется окно, перекрываемое заслонкой 7 с помощью электромагнита 8. В начальный момент взвешивания окно полностью открыто. При достижении заданной массы заслонка 3 с помощью электромагнита 2 перекрывает подачу материала из рукава 4 в ковш 1, который системой рычагов связан с циферблатным прибором 13. На корпусе циферблатного прибора укреплен контакт 14 нулевого положения стрелок, а на его задней стенке — сельсин- приемник со стрелкой 15 с закрепленными на ней двумя контактами: 17 и 18. Контакт 17 предназначен для точного отвеса, контакт 18 — для грубого. Стрелка 15 устанавливается с помощью сельсина-приемника в положение, соответствующее массе навески. Масса порции задается на пульте управления путем поворота оси сельсин-датчика. Команды на управление электромагнитами 8 и 2 дает стрелка 16, которая при подходе к контактам 17 и 18 замыкает их.
-
УРОВНЕМЕРЫ ЖИДКОСТЕЙ И СЫПУЧИХ
МАТЕРИАЛОВ
Для контроля уровня жидкостей наибольшее распространение получили указательные стекла, поплавковые, буйковые, манометрические уровнемеры.
Наиболее простыми приборами для измерения уровня являются указательные стекла (водомеры), применяемые в паровых котлах, а также в различных емкостях для измерения уровня осветленных жидкостей. Они представляют собой стеклянную трубку с
Рис. 81. Автоматические порционные весы
Технические характеристики поплавковых уровнемеров с пружинным уравновешиванием Тип уровнемера Тип резервуара Диапазон измерений, к УДУ-10-111 Наземный 0 ... 12 УДУ-10-121 » 0... 20 УДУ-10-211 Заглубленный 0 ... 12 УДУ-10-221 » 0 ... 20
Поплавковые уровнемеры широко применяют для измерения уровня разнообразных жидкостей (табл. 15). Простейший уровнемер (рис. 82, а) представляет собой плавающий поплавок 1, подвешенный на гибком тросе, перекинутом через блок. На втором конце троса вне сосуда для его натяжения подвешен груз 2 с укрепленной на ней стрелкой (указателем уровня), передвигающейся вдоль рейки со шкалой 3.
Буйковые уровнемеры (табл. 16) применяют в тех случаях, когда необходимо уменьшить перемещение поплавка относительно изменения уровня жидкости. В буйковом уровнемере (рис. 82, б) используется цилиндрический поплавок (буек) 2, закрепленный на пружине 1. Масса буйка зависит от глубины его погружения в жидкость, а жесткость пружины определяет коэффициент пропорциональности между изменением уровня и подъемом буйка. Класс точности 1,5 и 2,5.
Манометрические уровнемеры подразделяют, в свою очередь, на мембранные, пьезометрические и дифманометрические.
Мембранные уровнемеры предназначены для измерения уровня агрессивных сред в открытых емкостях. Они состоят из первичного преобразователя, преобразующего измеряемый параметр
Рнс. 82. Схемы механических уровнемеров: а — поплавкового; б — буйкового
Технические характеристики буйковых уровнемеров Твп Верхние пределы намерения, и Температура контролируемой среды, “С Давление в объекте, МПа УБ-Э 0,02; 0,04; 0,06 —40 ... 100 16 УБ-ЭА 0.1; 0,25; 0,6; 1,6 100 ... 400 6.4 УБ-ЭБ 2; 2.5; 3; 4; 6; 8; 10; 15 и 20 —200 ... —40 6.4 УБ-ЭВ —40 ... 200 4.0 УБ-ЭГ —40 ... 200 6.4
тически уравновешивается усилием, развиваемым давлением воздуха в сильфоне обратной связи. Это давление является одновременно выходным сигналом датчика.
Действие пьезометрических (гидростатических) уровнемеров основано на следующем принципе. Если в емкость с жидкостью ввести вертикальную встроенную трубку, доходящую почти до дна, и подавать в нее чистый воздух, то его давление в трубке будет равно массе столба продуваемой жидкости, т. е. значению уровня.
Пьезометрические манометры применяют для контроля агрессивных жидкостей или эмульсий.
В дифманометрических уровнемерах об уровне судят по перепаду давления жидкости у дна сосуда и над ее поверхностью. Уровень жидкости этим способом можно контролировать как в открытых, так и в закрытых емкостях.
Для измерения уровня сыпучих материалов применяют емкостные, высокочастотные, радиационные, кондуктометрические, весовые и механические уровнемеры.
Емкостные уровнемеры предназначены для измерения уровня сыпучих материалов и жидкостей. Принцип их действия основан на использовании зависимости электрической емкости системы «измерительный электрод — измеряемая среда». В этих приборах чаще всего используют емкостной преобразователь, представляющий собой коаксиально расположенные трубки, помещенные в объеме материала. Емкость преобразователя измеряется индуктивноемкостным мостом. С изменением уровня измеряемой среды вдоль оси преобразователя меняется его емкость, что приводит к нарушению равновесия моста и появлению на выходе сигнала разбаланса, пропорционального уровню измеряемой среды.
В последнее время промышленность освоила выпуск унифицированных высокочастотных резонансных измерителей и сигнализаторов уровня сыпучих материалов и жидкостей, работа которых основана на высокочастотном методе измерения. Эти приборы с успехом могут быть использованы в литейных цехах для измерения уровня формовочных материалов.
□
Рис. 83. Весовой уровнемер
Радиационные уровнемеры можно применять и как уровнемеры, и как сигнализаторы уровня. В качестве первичного преобразователя контрольно-измерительной системы используют приемное устройство (детектор) радиоактивного излучения, источниками которого служат радиоактивный изотоп кобальта (церий 137).
Радиоактивные сигнализаторы уровня можно использовать также для контроля уровня расплавленного металла в плавильной печи.
Кондуктометрические уровнемеры используют для сигнализации предельных значений уровня токопроводящих материалов. Принцип действия этих сигнализаторов основан на замыкании электрической цепи первичного преобразователя материалом измеряемой среды.
Измерительная система состоит из первичного преобразователя и релейного блока. Техническое исполнение измерительных систем может быть различным и зависит от вида контролируемого материала.
Весовые уровнемеры используют для измерения уровня формовочных или шихтовых материалов в бункерах.
В схеме весового уровнемера с тензометрическими преобразователями (рис. 83), принцип действия которых был рассмотрен в гл. 2, при изменении уровня сыпучих материалов в бункере 1 изменяется электрическое сопротивление тензорезистора 2. В качестве вторичного прибора используется уравновешивающий мост 3.
Для измерения уровня формовочных материалов в бункерах и уровня материалов в вагранках и других плавильных печах применяют механические нестандартные уровнемеры, к числу которых относят флажковые, зондовые и боковые сигнализаторы уровня.
Флажковый, или лопастной, сигнализатор уровня (рис. 84) используют для контроля уровня смеси в бункерах.
Рис. 84. Флажковый сигнализатор уровня
На нижнем конце рычага 3 шарнирно закреплена лопасть 1, удерживаемая в вертикальном положении пластинчатой пружиной 2.
На верхнем конце рычага установлен регулировочный винт 4. При заполнении бункера 6 формовочной смесью рычаг поворачивается и с помощью винта 4 воздействует на кнопку микропереключателя 5. Пластинчатая пружина позволяет лопасти отклоняться без поворота рычага 3 при динамическом воздействии формовочной смеси, которое может иметь место в начальный момент заполнения бункера. Недостатком рассмотренной конструкции является снижение чувствительности датчика при налипании материала на лопасть.
Зондовый сигнализатор уровня применяют для определения уровня шихты в вагранке. Зондовый сигнализатор (рис. 85) имеет зонд 1, подвешенный на тросе, который через блок 2 соединяется с барабаном 3. Барабан приводится во вращение пневматическим цилиндром 4. С помощью электромагнитного клапана 5 в левую полость цилиндра 4 периодически подается сжатый воздух или полость соединяется с атмосферой. Во втором случае под действием веса зонд опускается и перемещает шток поршня влево. Если уровень шихты нормальный, то упор 6 штока не доходит до кнопки микропереключателя 7. При более низком уровне шихты упор нажимает на стержень микропереключателя и подается команда на загрузку очередной порции шихты в вагранку. Подъем зонда осуществляется подачей сжатого воздуха в левую полость цилиндра 4.
Боковой сигнализатор уровня работает аналогично зондовому (рис. 86). Щуп 1, закрепленный на штоке пневматического ци-
линдра 2, периодически вдвигается через отверстие в стенке вагранки. Длина хода щупа зависит от уровня шихты.
Рис. 86. Боковой сигнализатор уровня
в. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ КОНТРОЛЕ РАСХОДА,
КОЛИЧЕСТВА И УРОВНЯ
К числу мероприятий по технике безопасности при эксплуатации приборов расхода, количества и уровня
Г, ос С . ОТНОСЯТСЯ следующие.
Основным мероприятием безопасной
эксплуатации расходомеров переменного перепада является обеспечение сброса продуктов продувки в дренажные или канализационные линии, чтобы предотвратить загрязнение окружающего воздуха продуктами продувки.
Для всех приборов, счетчиков и установок, расположенных в труднодоступных для обслуживания местах, должны быть предусмотрены площадки или колодцы с лестничными хорошо освещенными подходами. Для счетчиков должны быть предусмотрены обводные линии.
- Все элементы приборов, питаемые током опасного напряжения, должны быть надежно заземлены.
Основными сигнализаторами уровня, применяемыми в литейных и термических цехах, являются электрические, поэтому общими требованиями безопасной эксплуатации их являются обеспечение каждой автономной измерительной системы удобными средствами отключения питающей электрической линии при аварийных ситуациях, а также обеспечение каждого прибора средствами самостоятельной защиты от токов короткого замыкания. Корпуса релейных блоков, к которым подводится ток опасного напряжения, должны быть Надежно заземлены.
Для кондуктометрических сигнализаторов значение напряжения постоянного и переменного токов в электродной системе не должно превышать соответственно 24 и 36 В.
Радиоактивные приборы являются совершенно безопасными только в случае соблюдения всех требований эксплуатации, перечисленных в монтажно-эксплуатационной инструкции для каждого радиоактивного прибора.
Контрольные вопросы и задания
-
Что называется расходом вещества и в каких единицах он измеряется?
-
Расскажите о классификации приборов для измерения расхода жидкостей, газов, твердых и сыпучих материалов.
-
Расскажите о классификации приборов для контроля уровня жидкостей и сыпучих материалов.
-
Изложите принцип действия расходомеров обтекания.
-
Изложите принцип действия расходомеров переменного перепада давления.
-
Изложите принцип действия расходомеров переменного уровня.
-
Изложите принцип действия индукционных расходомеров.
-
Изложите принцип действия тахометрнческих расходомеров.
-
Расскажите об устройстве и работе счетчиков жидкости и газов.
-
Расскажите о работе и устройстве счетчиков и весов твердых и сыпучих материалов.
-
Изложите принцип действия поплавковых и буйковых уровнемеров.
-
Изложите принцип действия манометрических уровнемеров.
-
Изложите принцип действия емкостных и высокочастотных уровнемеров.
-
Изложите принцип действия радиационных н кондуктометрнческих уровнемеров.
-
Изложите принцип действия весовых уровнемеров.
-
Изложите принцип действия механических нестандартных уровнемеров.
ГЛАВА ю. КОНТРОЛЬ СПЕЦИАЛЬНЫХ ПАРАМЕТРОВ
-
КОНТРОЛЬ СОСТАВА ГАЗА
В литейных и термических цехах приходится контролировать состав самых разнообразных газов: горючих газов и продуктов их сгорания, защитных атмосфер и газов в воздухе помещений цехов. Контроль состава газа позволяет судить о правильности протекания технологического процесса. Например, по составу защитных атмосфер в термических пёчах определяют качество процесса химико-термической обработки; по составу дымовых газов судят о полноте сгорания топлива в печах; по составу колошниковых газов в доменной печи ведут процесс плавки и т. д.
Газоанализаторами называют приборы, предназначенные для количественного определения состава газа (одного или нескольких компонентов). Они проградуированы в объемных процентах. По назначению различают переносные и технические газоанализаторы. Первые используют для лабораторных исследований и проверки автоматических газоанализаторов.
Основным элементом каждого прибора является измерительный преобразователь газового анализа, принцип действия которого определяет тип газоанализатора. По принципу действия измерительного преобразователя различают химические, электрохимические, термохимические, термокондуктометрические, магнитные и оптические газоанализаторы.
Принцип работы химических газоанализаторов основан на последовательном удалении анализируемых компонентов из взятой газовой пробы при проведении химических реакций. Наибольшее распространение получил переносной газоанализатор на три компонента: СО, С02 и 02. Для поглощения СО служит раствор двухлористой меди (СиС12), нашатырного спирта (ЫН4С1) и аммиака (ЫН3); для С02 — раствор едкого кали (КОН); для 02 — смесь едкого кали с пирогалловой кислотой (С6Н8 (ОН)я). Объем газовой смеси измеряют до начала цикла измерений и после реакции каждого компонента. По разности объемов оценивают процентное содержание компонента в газовой смеси.
Переносные газоанализаторы обладают высокой точностью измерения; недостатком приборов является длительность анализа. Их применяют только для контроля и отладки тепловых процессов.
Электрохимические газоанализаторы предназначены для определения содержания кислорода в газовой смеси. Действие газоанализаторов этого типа основано на электрохимической реакции, вызывающей образование тока в электролите при взаимодействии кислорода с электродом. Сила тока, протекающего по внешней цепи электролита, пропорциональна концентрации кислорода в газовой смеси. Такие газоанализаторы предназначены для определения содержания кислорода в различных газовых смесях, водяном и генераторном газах.
Действие термохимических газоанализаторов основано на измерении теплового эффекта реакции кислорода с другими газами, протекающей в присутствии катализатора. Количество выделившейся теплоты пропорционально количеству содержащегося в смеси анализируемого газа при постоянном расходе смеси. Термохимические газоанализаторы предназначены для определения содержания кислорода или водорода в смеси газов. Измерение количества теплоты производится с' помощью термометров сопротивления, включенных в схему электрического моста. Преобразователь прибора имеет две камеры — рабочую и сравнительную, в которых расположены термометры сопротивления. В рабочей камере, заполненной катализатором, сгорает анализируемый компонент, а в сравнительной камере находится неактивная масса. По разности температур определяют содержание анализируемого компонента газовой смеси.
Принцип работы термокондуктометрических газоанализаторов основан на измерении теплопроводности газовой смеси, которая практически однозначно определяется содержанием анализируемого компонента.
Теплопроводности Н2; СОг и 502 сильно отличаются от теплопроводности воздуха и таких газов, как Ы2; 02; СО; СН4 и др. В связи с этим рассматриваемые газоанализаторы чувствительны на На; С02 и и с их помощью можно определить процент содержания указанных составных частей, когда они присутствуют в смеси с другими газами. Чувствительным элементом является нагретая проволока, которая при омывании ее газами различной теплопроводности изменяет свое электрическое сопротивление. В газоанализаторах применяются прямая и дифференциальная измерительные схемы.
Газоанализатор прямого измерения (рис. 87, а) состоит из четырех нагреваемых платиновых проволочных резисторов, заключенных в четыре газовые камеры. Две рабочие камеры /
а — прямого измерения; 6 — дифференциальная
и 4 соединяются с исследуемой газовой средой, а две сравнительные камеры 2 и 5 заполнены воздухом или газом постоянного состава.
По дифференциальной схеме (рис. 87, б) измерения анализируемая газовая смесь проходит сначала через рабочие камеры 1 и 4, а затем, после предварительного удаления из нее контролируемого газа в печи дожигания или в поглотитель 5, поступает в сравнительные камеры 2 и 6, выполняя функции сравнительного газа. Прн изменении концентрации анализируемого газа в диагонали моста как в первой, так и во второй схеме появляется напряжение разбаланса, значение которого пропорционально концентрации газа и измеряется прибором 3.
Из всех газов кислород обладает максимальной магнитной восприимчивостью. Например, его магнитная восприимчивость почти в 60 раз больше магнитной восприимчивости воздуха. Это свойство позволило разработать метод для избирательного определения его концентрации в газовых смесях. Наибольшее распространение получили термомагннтные газоанализаторы, в которых измеряется не сама магнитная восприимчивость кислорода, а ее уменьшение при увеличении температуры газа. Преобразователь такого газоанализатора (рис. 88) выполнен в виде кольцевой камеры 1. В поперечной стеклянной трубке 2 расположены два термоэлемента (резистора): Я1 и Я2, включенные в мостовую измерительную схему. Когда анализируемый газ проходит через кольцевую камеру, то, благодаря парамагнитным свойствам кислорода, он втягивается в поперечную стеклянную трубку 2. Соприкасаясь с нагретым термоэлементом, газ нагревается, теряет частично свои магнитные свойства и выталкивается из магнитного поля более холодным, создавая явление термомагнитной конвекции. Интенсивность термомагнитной конвекции измеряется по изменению температуры термоэлемента, вызванного конвекцией, и, как следствие этого, по изменению его электрического сопротивления. Последнее приводит к разбалансу моста, что регистрируется измерительным прибором 3.
Рис. 88. Преобразователь термомагнитного газоанализатора
Рис. 89. Преобразователь оптико-акустического газоанализатора
Работа оптических газоанализаторов основана на измерении ослабления интенсивности электромагнитного излучения или поглощения его потока определенным компонентом при прохождении излучения через исследуемую газовую смесь. При этом в оптических газоанализаторах может использоваться весь спектр электромагнитных колебаний — инфракрасная, ультрафиолетовая и видимая области.
Наибольшее распространение получили оптические абсорбционные газоанализаторы, работающие в инфракрасной области спектра, т. е. оптико-акустические газоанализаторы. Их действие основано на способности определенного газа поглощать инфракрасные лучи. Этой способностью обладают все газы, за исключением одноатомных, а также водорода, кислорода, азота и хлора. Измерение концентрации газа проводится на основании оптико-акустического эффекта, который заключается в следующем. Если исследуемый газ в замкнутом объеме (рис. 89) облучать прерывистым (со звуковой частотой) потоком энергии в инфракрасной области, то он будет периодически нагреваться и охлаждаться и в нем возникнут колебания давления с той же частотой. Колебания давления воспринимаются чувствительным элементом — мембраной, которая является одной из обкладок конденсаторного микрофона 2, соединенного с измерительной схемой. В качестве источника инфракрасного излучения используется нагретая до 700—800 °С хромоникелевая проволока /. Промышленность выпускает несколько типов оптико-акустических газоанализаторов для определения концентрации СО, СОа, СН4 в различных газовых смесях.
В измерительный комплекс каждого газоанализатора входит газоотборное устройство, служащее для отбора исследуемого газа и транспортировки его к первичному преобразователю. Схема газоотборного устройства, находящегося под избыточным давлением, представлена на рис. 90. В дымоходе располагают
Рис. 90. Газоотборное устройство
заборное устройство, представляющее собой сосуд (фильтр), / с пористыми стенками. Топочные газы, просачиваясь через пористые стенки, поступают в отборочный трубопровод и через трехходовой продувочный кран 2 направляются в фильтр 3 для очистки от сернистых примесей. Фильтр представляет собой цилиндр, заполненный влажной стальной стружкой. Затем газ через контрольный фильтра 4 по трубопроводу 5 попадает в холодильник 6, который, как правило, выполнен по схеме «труба в трубе», где газ протекает по внутренней трубе, а охлаждающая вода — по кольцу, образуемому трубой и корпусом. Очищенный и охлажденный газ подается в рабочую камеру первичного преобразователя газоанализатора.
-
КОНТРОЛЬ ВЛАЖНОСТИ И ЗАПЫЛЕННОСТИ ГАЗА
Влажность воздуха играет большую роль в процессах сушки формовочных материалов и приготовления контролируемых атмосфер термических печей, в устройствах кондиционирования воздуха. Влажность во многом определяет санитарно- гигиенические условия труда.
Измерительные приборы, предназначенные для измерения величин, характеризующих влажность газов, получили название гигрометров или влагомеров.
Для контроля и измерения влажности газов используют многочисленные методы, основанные на различных принципах. Наибольшее практическое распространение получили психрометрический и сорбционный методы.
Психрометрический метод основан на использовании изменения степени охлаждения поверхности увлажненного тела при испарении с нее воды,.Степень охлаждения поверхности зависит от параметров влажности газа, омывающего эту поверхность. Рассмотренное явление носит название психрометрического эффекта. В приборах, принцип действия которых основан на психрометрическом эффекте, измерение осуществляется с помощью двух термометров: сухого и влажного. Испарение влаги с поверхности резервуара влажного термометра происходит тем интенсивнее, чем ниже влажность воздуха. Поэтому в условиях термодинами-
Рис. 91. Электрический подогре- Рис. 92. Оптическая система измерктеля запиваемый преобразователь влаж- ленностии
ности газа
ческого равновесия разность показаний сухого и влажного термометров характеризует влажность воздуха и называется психрометрической разностью.
Сорбционный метод измерения влажности газов основан на измерении электрических свойств влагосорбирующего материала в зависимости от изменения влажности окружающей среды.
Сорбционный метод измерения влажности используется в кулонометрических и электролитических влагомерах. Принцип действия кулонометрического влагомера основан на непрерывном поглощении влаги из контролируемого газового потока пленкой гидрофильного вещества и одновременном разложении воды в толще пленки путем электролиза на водород и кислород. В установившемся режиме значение электролитического тока является мерой влажности контролируемого газа. Погрешность прибора не превышает 6 %.
Электролитические влагомеры работают по принципу зависимости электрических свойств чувствительного элемента от влажности окружающего газа. Такие преобразователи по конструктивному выполнению подразделяют на подогреваемые и неподо- греваемые. Первые получили наибольшее распространение.
Принцип действия электролитического подогреваемого преобразователя основан на измерении температуры гигрометриче- ского равновесия. В этом преобразователе (рис. 91) используют свойство гигроскопичности хлористого лития. На запаянную с одного конца кварцевую трубку 1 наносят слой стеклоткани 2, пропитанный хлористым литием. Поверх стеклоткани наматывают две не соединяющиеся друг с другом проволоки 3 из благородных металлов, выполняющих роль электродов. На электроды подается переменный ток. Во внутрь кварцевой трубки помещают термометр сопротивления 4. При соприкосновении газа, содержащего водяные пары с хлористым литием, последний увлажняется, образуя электролит. Так как на электроды подается напряжение, то через электролит потечет ток, который приведет к разогреву преобразователя и постепенному испарению влаги. Процесс испарения будет сопровождаться охлаждением преобразователя. Спустя некоторое время между процессом насыщения парами газа и Испарением влаги» наступит равновесие. Температура равновесия является мерой, Влажности газа, так как по ее значению может быть определена точка роср. Этот преобразователь позволяет осуществлять автоматический контроль точки росы в процессе изготовления и подачи контролируемых атмосфер в рабочее пространство нагревательных печей.
Измерители запыленности осуществляют контроль запыленности воздушной среды й техйологических газов, а также контроль концентрации аэрозольных частиц.
Промышленность выпускает анализаторы запыленности типа АЗ. Они предназначены для определения запыленности воздуха и технологических газов, проверки эффективности работы технологических воздушных и газовых фильтров, определения концентрации аэрозоля в воздухе/ нахождения источника запыленности аэрозольными частицами.
Прибор представляет собой фотоэлектрический счетчик аэрозольных частиц с пределами измерения концентрации пыли от 1 до 300 ООО частиц в литре. В приборе имеется переключатель размера регистрируемых; частиц С 0,4 до 10 мкм.
Принцип работы прибора основан на рассеивании света аэрозольными частицами. При этом существует количественная зависимость между размерами частиц и интенсивностью рассеянного света. Чувствительным- эле:ментом прибора является оптический преобразователь (рис. 92). Анализируемая пыль просачивается через измерительную полость 10 преобразователя с постоянным расходом. Перпендикулярно измерительной плоскости расположены источник света 6, два объектива 7 и 9 и диафрагма 8, создающая сфокусированный световой луч. Под прямым углом к нему установлены объектив 5 и диафрагма 4, которые фокусируют луч, направленный от источника света 6 к фотоэлектронному усилителю 3. Модулятор светового потока 2, призмы lull служат для контроля и калибрования размеров частиц пыли.
Если в измерительной полости пыли нет, то фототок' в фотоэлектронном усилителе отсутствует. При попадании пыли в измерительную камеру от ее частиц появляется рассеянный свет, и на выходе усилителя образуется электрический сигнал. Длительность сигнала пропорциональна времени пролета частиц через полость, а его амплитуда определяется размерами частиц.
Количество пыли определяется в зависимости от измеряемого предела по электромеханическому счетчику или по шкале показывающего прибора, отградуированной в единицах измерения запыленности (части на один литр).
В литейных цехах очень важным параметром, существенно определяющим процесс производства отливок, является влажность формовочных материалов, влияющих на качество форм, и влажность шихтовых материалов, определяющих ход процесса плавки в вагранках.
Измерительные приборы, предназначенные для определения влажности, называют влагомерами. Все методы измерения влажности принято подразделять на прямые и косвенные.
При использовании прямых методов осуществляют непосредственное разделение исследуемого материала на сухое вещество и влагу.
При лабораторных исследованиях и для контроля автоматических приборов используют весовой (прямой) метод.
Сущность метода состоит в том, что навеску исследуемого материала (формовочной смеси, песка и т. д.) закладывают в лабораторную бюксу и, после тщательного взвешивания, устанавливают в сушильный шкаф при температуре 103 ... 105 С и сушат до постоянной массы. После этого высушенный материал помещают в эксикатор^ охлаждают в присутствии силикагеля и вторично взвешивают на тех же весах. По результатам взвешивания определяют влажность материалов.
Описанный метод обеспечивает высокую точность, но проводится в течение длительного отрезка времени (2 ... 3 ч).
В последнее время все большее распространение получают косвенные физические методы измерения влажности сыпучих материалов. Они основаны на преобразовании влажности в какую- либо физическую величину, удобную для измерения или дальнейшего преобразования с помощью измерительных преобразователей. В зависимости от характера измеряемого параметра, косвенные методы подразделяют на электрические и неэлектрические. В основе электрических методов лежит прямое измерение электрических параметров исследуемого материала. При использовании неэлектрических методов определяется физическая величина, которая затем преобразуется в электрический сигнал. Среди электрических методов наибольшее распространение получили кондуктометрические и диэлькометрические (емкостные).
Кондуктометрический метод основан на измерении электрического сопротивления материала, которое изменяется в зависимости от влажности материала. При измерении влажности этим методом пробу вещества 1 помещают между плоскими электродами 2 первичного преобразователя (рис. 93). Сила тока, измеряемая прибором 3, будет зависеть от влажности пробы. Резистор Я0 используется для корректировки нуля прибора. Кондуктометрический метод позволяет определять влажность сыпучих материалов в пределах 2 ... 20 %. Верхний предел ограничен падением чувствительности с ростом влажности, а нижний обуслов-
Рис. 93. Схема кондуктометрического Рис. 94. Схема емкостного влагомера влагомера
і-і с,
Ні— 1-®^=г
В измерительной схеме емкостного влагомера (рис. 94), работающего на принципе определения диэлектрических потерь, емкость конденсаторного преобразователя определяется с помощью резонансного контура, состоящего из индуктивности и переменной емкости Сх. Резонанс контура обеспечивается настройкой конденсатора С0. В качестве индикатора резонанса используют вольтметр 2. Контур отделен от генератора 1 разделительным конденсатором Ср. При увеличении влажности испытуемого образца 3 емкость преобразователя изменяется. Для восстановления симметрии необходимо изменить емкость конденсатора С0 так, чтобы суммарная емкость контура стала вновь первоначальной. Изменение положения рукоятки конденсатора С0 является показателем влажности.
Недостатком этого метода является зависимость' емкости материала не только от влажности, но и от химического состава. Поэтому емкостные методы контроля влажности используют только со специальными приспособлениями для каждого конкретного материала.
Среди неэлектрических методов контроля влажности сыпучих материалов из-за ряда преимуществ большое распространение получили радиоизотопные. К числу этих преимуществ относятся простота монтажа и малая подверженность влиянию окружающей среды. В основу действия измерительной системы такого влагомера положена непрерывная регистрация потока медленных нейтронов, которые образуются в результате облучения исследуемого материала быстрыми нейтронами. Замедление нейтронов осуществляется содержащимся в материале водородом.
-
КОНТРОЛЬ, ПЛОТНОСТИ ЖИДКОСТИ
В литейных цехах качество формовочных и стержневых смесей во многом зависит от количественного состава применяемых для их изготовления формовочных растворов, плотность ко
Рис 95. Плотномер с плавающим бУйком
торых является косвенным показателем состава. В этой связи на участках приготовления глинистой суспензии и жидкого стекла приходится непрерывно контролировать плотность.
Плотностью называют величину, определяемую отношением массы тела к его объему. Единица плотности — килограмм на кубический метр (кг/м8). Приборы для измерения плотности жидкости Называют плотномерами. В зависимости от применяемых методов различают поплавковые, весовые, гидростатические и радиоизотоп-
ные плотномеры.
Принцип действия поплавковых плотномеров основан на использовании ареометрического метода. Поэтому их иногда называют ареометрами. В качестве чувствительного элемента используется плавающий или погруженный в жидкость поплавок.
В работе плотномеров с плавающим поплавком используется зависимость степени погружения поплавка с постоянной массой от плотности контролируемой жидкости. Такой плотномер (рис. 95) состоит из емкости 3, в которой непрерывно протекает жидкость. В жидкости плавает металлический полый поплавок 2, жестко связанный с мапштопроводом 1 индукционного преобразователя. Глубина погружения поплавка зависит от плотности жидкости. При движении поплавка вверх, или вниз меняется положение магнитолровода Г, что приводит к изменению индуктивного сопротивления преобразователя, измеряемого вторичным прибором.
Действие весового плотномера основано на взвешивании поплавка, заполненного эталонной жидкостью и погруженного в контролируемую жидкость, или на взвешивании отрезка трубопровода, по которому протекает контролируемая жидкость.
Гидростатические (пьезометрические) плотномеры работают по принципу измерения зависимости потерь давления воздуха, продуваемого через жидкость, от ее плотности.
Рис. 96. Измеритель плотности типа КМ
трический сигнал, который подается на вторичный или самопишущий прибор.
Метод измерения плотности радиоизотопных плотномеров основан на измерении интенсивности у-излучения после прохождения его через контролируемую среду. Необходимая чувствительность радиоизотопного метода обеспечивается выбором подходящего источника излучения радиоактивного изотопа. В качестве приемников используются счетчики (иногда ионизированные камеры).
Б. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ КОНТРОЛЕ
СПЕЦИАЛЬНЫХ ПАРАМЕТРОВ
К числу мероприятий по технике безопасности приборов для измерения состава газа относятся следующие.
Необходимо осуществлять постоянный контроль за герметичностью соединительных линий, исключающий скопление газа в месте установки газоанализатора. Линии поступления и сброса газа должны‘иметь продувочные краны.
Сброс газа после прохождения измерительной системы должен производиться только в вытяжные коммуникации с принудительной вентиляцией.
Мероприятиями безопасности приборов для измерения влажности сыпучих материалов и плотности жидкости является обеспечение установки приборов в хорошо доступных местах. Все приборы, питаемые электроэнергией, должны быть тщательно заземлены и иметь плавкие предохранители, точно рассчитанные на допустимое значение рабочего тока.
Радиоактивные приборы необходимо эксплуатировать только согласно рабочей инструкции.
Контрольные вопросы а задания
-
Расскажите о классификации приборов, предназначенных для анализа
газа.
-
На каком методе основана работа ручного газоанализатора?
-
Как осуществляютси анализ газа и определение содержания COs, Os и СО в дымовых газах?
-
На каком принципе основана работа магнитного газоанализатора?
-
На каком принципе основана работа оптического газоанализатора?
-
Каким образом осуществляются отбор и подготовка газовой пробы?
-
Как определяется влажность газа?
-
Каким образом определяется запыленность воздуха?
-
Расскажите о методах определения влажности сыпучих материалов.
-
Расскажите о методах контроля плотности жидкости.
РАЗДЕЛ Ш
АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ, КОНТРОЛЬ И РЕГУЛИРОВАНИЕ
- Глава 1. Общие сведения
- Основные понятия и определения
- Классификация систем автоматического управления
- Элементы автоматических систем
- Глава 2. Первичные преобразователи
- Потенциометрические первичные
- Индуктивные первичные преобразователи
- Емкостные первичные преобразователи
- Тензометрические первичные
- Глава 3. Усилители и стабилизаторы
- Электромеханические и магнитные усилители
- Электронные усилители
- Стабилизаторы
- Глава 4. Переключающие устройства и распределители
- Электрические реле
- Реле времени
- Глава 5. Задающие и исполнительные устройства
- Глава 6. Общие сведения об измерении и контроле
- Глава 7. Контроль температуры
- Глава 8. Контроль давления и разрежения
- Глава 9. Контроль расхода, количества и уровня
- Глава 11. Системы автоматики
- Глава 12. Автоматическая блокировка и защита в системах управления
- Глава 13. Системы автоматического контроля и сигнализации
- Глава 14. Системы автоматического
- Глава 15. Объекты регулирования и их свойства
- Глава 16. Типы регуляторов
- Глава 17. Конструкции и характеристики регуляторов
- Раздел IV
- Глава 18. Общая характеристика
- Глава 19. Математическое и программное обеспечение микроЭвм
- Глава 20. Внешние устройства микроЭвм
- Глава 21. Применение микропроцессорных систем
- Раздел V
- Глава 22. Общие сведения
- Глава 23. Конструкции промышленных роботов
- Глава 25. Роботизация промышленного производства
- Раздел IV
- Глава 1н, общая характеристика микропроцессорных
- 4. Гидравлические и пневматические