Тензометрические первичные
ПРЕОБРАЗОВАТЕЛИ
Работа тензометрического преобразователя (тензорези- стора) основана на изменении электрического сопротивления проводников при упругих деформациях растяжения или сжатия. Они применяются для преобразования деформаций, усилий и напряжений в электрический сигнал. В зависимости от конструкции и материала чувствительного элемента тензорезисторы подразделяются на проволочные, фольговые, полупроводниковые и тензолитовые.
Простейшим проволочным тензорезистором может служить отрезок тонкой проволоки. При деформации детали одновременно будет деформироваться и наклеенная проволока. Изменение электросопротивления Д/? проволоки при ее растяжении или сжатии связано с относительной деформацией е соотношением
Д^? — /Ы?,
где Я — номинальное сопротивление проволоки. Ом; к — коэффициент чувствительности.
Коэффициент чувствительности & зависит от вида материала и технологии изготовления преобразователя; его значение определяют экспериментально. Наибольшее распространение получили константан и нихром, для которых И = 1,9—-2,1.
Размеры детали часто не позволяют закрепить на ней преобразователь в виде прямолинейного отрезка проволоки большой длины. Поэтому промышленностьфизготовляет тензометрические преобразователи в виде спирали (решетки) из нескольких петель проволоки (рис. 9, а). Проволоку / наклеивают на подложку 2 из тонкой бумаги или лаковой пленки и сверху наклеивают
а) 6) в)
Рис. 9. Тензометрические преобразователи: а — проволочные; б — с медными перемычками; в — фольговые
такую же тонкую бумагу. К проволоке приваривают (или при паивают) выводы 3, выполненные из тонких полосок медном фольги. Недостатком данной конструкции решетки является чувствительность преобразователя к поперечным деформациям. Для устранения этого недостатка петли между рядами заменяют медными перемычками 4 (рис. 9, б). Основными параметрами решетки являются: длина I (3 ... 75 мм), ширина а (0,03 ... 10 мм) и радиус закругления г (0,1 ... 0,3 мм).
Проволочные тензорезисторы просты по конструкции, имеют малую массу и невысокую стоимость. Их статическая характеристика линейна и реверсивна. К недостаткам проволочных тензо- резисторов относятся низкая чувствительность и одноразовость действия. Они подвержены влиянию окружающей среды (температура и влага).
Фольговые тензорезисторы по принципу действия и основным параметрам сходны с проволочными преобразователями и отличаются только конструкцией решетки (рис. 9, в) и способом ее получения. Для фольговых тензорезисторов применяется фольга толщиной 4 ... 12 мкм из константана, нихрома, титан-алюми- ниевого или золото-серебряного сплавов. Решетку фольговых тензодатчиков получают методом фотолитографии, который позволяет изготовлять преобразователи любой конструкции (линейные, розеточные, мембранные и т. и.) с высокой повторяемостью параметров. Фольговые тензорезисторы по сравнению с проволочными имеют ряд преимуществ. Они более чувствительны и точны за счет лучшей передачи деформаиии от детали к фольге, имеют хороший механический контакт с контролируемой деталью и позволяют пропускать через фольгу большой ток.
В настоящее время начинают находить применение полупроводниковые тензопреобразователи, изготовленные из полупроводниковых материалов — кремния, германия, мышьяка, галия и др.
В отличие от проволочных и фольговых преобразователей изменение сопротивления при деформации у полупроводниковых происходит благодаря изменению удельного сопротивления.
Основным преимуществом полупроводниковых преобразователей является высокая чувствительность (почти в 100 раз выше, чем у проволочных). Они имеют большой выходной сигнал, что позволяет в некоторых случаях отказаться от применения усилителя. Однако у них большой разброс параметров и низкая механическая прочность, т. е. они хрупки.
Тензометрические преобразователи находят применение в машинах литья под давлением для определения давления металла в камере прессования, а также при контроле качества термической обработки.
в. ФОТОЭЛЕКТРИЧЕСКИЕ ПЕРВИЧНЫЕ
ПРЕОБРАЗОВАТЕЛИ
Принцип действия фотоэлектрических преобразователей (фотоэлементов) основан на использовании фотоэлектрического эффекта, т. е. они реагируют на изменение светового потока. Создание фотоэлектрических преобразователей оказалось возможным, когда были открыты материалы, электроны которых получают дополнительную энергию при воздействии световой энергии. Причем значение дополнительной энергии может быть таково, что часть электронов оказывается свободной.
В зависимости от поведения электронов, высвобождающихся под действием светового потока, различают три группы фотоэлементов: с внешним и внутренним фотоэффектом и с запирающим слоем (вентильные).
Фотоэлемент с внешним фотоэффектом (рис. 10, а) представляет собой вакуумную двухэлектродную лампу. Катод 1 образован светочувствительным слоем (цезий или сплав сурьмы с цезием) и нанесен на внутреннюю поверхность лампы, а анод 2 выполняется в виде кольца или пластины. Нередко в лампу вводят некоторое количество нейтрального газа (аргона), который не окисляет поверхность металла, но способен ионизироваться под ударами летящих электронов и увеличивать за счет своих ионов значение протекающего тока. Под действием световой энергии с поверхности выбиваются электроны, образующие электрический ток (внешний фотоэффект). Промышленность выпускает фотоэлементы следующих типов: ЦГ — цезиевый газонакопленный; СЦВ'— сурьмяно-цезиевый, вакуумный; ЦВ — цезиевый, вакуумный.
Фотоэлементы с внешним фотоэффектом обладают высокой чувствительностью и высокой температурной стабильностью. Для них характерна линейная зависимость фототока от светового потока. К числу недостатков рассмотренных фотоэлементов, которые ограничивают их применение в автоматических системах управления, относятся: необходимость в повышенном напряжении питания; хрупкость стеклянного баллона; старение и утомляемость, т. е. снижение чувствительности при сильной освещенности.
Рис. 10. Фотоэлектрические преобразователи: а — с внешним фотоэффектом; б — с внутренним фотоэффектом; в — вентильные
Фотоэлементы с внутренним фотоэффектом (фоторезисторы) чувствительнее элементов первого типа, использующих фотоэф фект со свободной поверхности металла. Фотоэлементы с внутренним фотоэффектом не нуждаются во вспомогательной энергии, и им может быть придана весьма разнообразная и очень удобная форма. Недостатками их являются: подверженность влиянию окружающей температуры, утомляемость и высокая инерционность. Последнее ограничивает применение фотоэлементов с внутренним фотоэффектом при частоте прерывания светового потока в несколько десятков герц.
Фоторезисторы (рис. 10, б) представляют собой стеклянную пластинку 1 с нанесенным тонким слоем селена или сернистых соединений различных металлов (таллня, висмута, кадмия, свинца). К пластине прикреплены электроды 2, имеющие контакт с полупроводниковым слоем. Размеры фоторезисторов очень невелики. При подаче к электродам напряжения через фоторезистор будет протекать ток, значение которого пропорционально освещенности. Зависимость тока от освещения имеет нелинейную величину. Однако чувствительность фоторезисторов в. сотни раз превышает чувствительность вакуумных элементов, что позволяет их использовать в автоматических устройствах без усилителей.
У вентильных преобразователей свободные электроны, изменяя свою энергию под действием светового потока, остаются в веществе. В промышленности получили наибольшее распространение селеновые и меднозакисные фотоэлементы.
Селеновый фотоэлемент (рис. 10, в) имеет четыре рабочих слоя. Первый слой образован тонкой пленкой золота 1, далее идут запирающий слой 2, селеновый слой 3 и стальная подкладка 4. Запирающий слой, обладая детекторным свойством, пропускает электроны, выделившиеся из пленки золота и препятствуют прохождению электронов противоположного направления. Таким образом, световой поток, проходя через пленку золота, создает вентильный фотоэффект, т. е. электроны из освещенного слоя переходят в неосвещенный. Это приводит к возникновению разности потенциалов 1/вых.
Фотоэлектрические преобразователи просты по устройству и достаточно надежны в работе. Они находят широкое применение в системах автоматики в литейных и термических цехах: для автоматического управления освещением цехов, для измерения температуры жидкого металла и нагретых деталей (фотоэлектрический пирометр), определения прозрачности жидкостей или газов, подсчета форм и изделий, проходящих по конвейеру, для контроля пламени в топках топливных печей. Они применяются в системах защиты обслуживающего персонала от травм и т. п. В целом возможности фотоэлектрических преобразователей в металлургическом производстве чрезвычайно велики.
Контрольные вопросы и задания
-
Какие элементы автоматического управления (контроля) называются первичными преобразователями (датчиками)?
-
В чем заключается различие между параметрическими и генераторными преобразователями?
-
Расскажите об устройстве потенциометрических преобразователей,
-
Почему у индуктивных преобразователей статическая характеристика (вход-выход) нелинейная?
-
Расскажите об устройстве трансформаторного преобразователя.
-
Объясните принцип действия ферродииамического преобразователя.
-
Объясните принцип действия и назначение емкостных преобразователей.
-
В чем заключаются достоинства и недостатки тензометрических преобразователей?
-
Перечислите типы фотоэлектрических преобразователей и укажите их достоинства н недостатки.
-
Объясните принцип действия фотоэлектрических преобразователей.
Лабораторная работа 1. Исследование статических характеристик тензометрических преобразователей
Цель работы. Изучить конструкцию и принцип действия проволочных и фольговых тензорезисторов. Получить статические характеристики испытуемых преобразователей.
Рис. 11. Лабораторнаи установка для испытания тензорезисторов: а — схема включення; б — схема нагружения
Порядок выполнения работы. 1. Ознакомиться с преобразователями, установленными на стенде, и изучить электрическую схему соединений тензорезисторов и измерительного прибора. 2. Собрать электрическую схему испытаний (рис. 11, а). 3. Изменяя массу груза т от нуля до максимального и от максимального до нуля, снимают зависимости для тензорезисторов 1 — f (m). Для повышения чувствительности тензорезисторов два из них R1 и R2 наклеивают на стальную пластину сверху и снизу. 4. Результаты измерений заносят в протокол испытаний и по ним строят зависимость I — f (а), где а — напряжение изгиба, определяемое как отношение момента изгиба М к моменту сопротивления пластины N в месте наклейки терморезисторов; а = — M/N; М — mL; N — bh2/6, где buh — ширина и высота пластины, м; I — расстояние от места приложения груза до центра тензорезистора, м.
Содержание отчета. Отчет должен содержать краткое описание принципа действия и назначение тензорезисторов, таблицу результатов испытаний, расчетные формулы и графики зависимостей выходных и входных величин.
- Глава 1. Общие сведения
- Основные понятия и определения
- Классификация систем автоматического управления
- Элементы автоматических систем
- Глава 2. Первичные преобразователи
- Потенциометрические первичные
- Индуктивные первичные преобразователи
- Емкостные первичные преобразователи
- Тензометрические первичные
- Глава 3. Усилители и стабилизаторы
- Электромеханические и магнитные усилители
- Электронные усилители
- Стабилизаторы
- Глава 4. Переключающие устройства и распределители
- Электрические реле
- Реле времени
- Глава 5. Задающие и исполнительные устройства
- Глава 6. Общие сведения об измерении и контроле
- Глава 7. Контроль температуры
- Глава 8. Контроль давления и разрежения
- Глава 9. Контроль расхода, количества и уровня
- Глава 11. Системы автоматики
- Глава 12. Автоматическая блокировка и защита в системах управления
- Глава 13. Системы автоматического контроля и сигнализации
- Глава 14. Системы автоматического
- Глава 15. Объекты регулирования и их свойства
- Глава 16. Типы регуляторов
- Глава 17. Конструкции и характеристики регуляторов
- Раздел IV
- Глава 18. Общая характеристика
- Глава 19. Математическое и программное обеспечение микроЭвм
- Глава 20. Внешние устройства микроЭвм
- Глава 21. Применение микропроцессорных систем
- Раздел V
- Глава 22. Общие сведения
- Глава 23. Конструкции промышленных роботов
- Глава 25. Роботизация промышленного производства
- Раздел IV
- Глава 1н, общая характеристика микропроцессорных
- 4. Гидравлические и пневматические