Глава 16. Типы регуляторов
-
КЛАССИФИКАЦИЯ АВТОМАТИЧЕСКИХ РЕГУЛЯТОРОВ
Основная функция регулятора состоит в том, чтобы выявить отклонение регулируемой величины от заданного значения, усилить это отклонение и преобразовать в перемещение исполнительного механизма или в управляющий сигнал регулирующего органа. Иными словами, автоматический регулятор — это комплекс устройств, предназначенных для измерения регулируемой величины, сопоставления ее с заданной и оказания регулирующего воздействия на процесс для устранения выявленного отклонения. Каждую из перечисленных функций выполняет определенная часть регулятора, который состоит из следующих узлов: чувствительного (измерительного) элемента, управляющего устройства с задатчиком, исполнительного механизма и регулирующего органа.
В литейных и термических цехах для автоматизации различных технологических процессов используют множество регуляторов, различающихся разнообразными признаками и конструкцией. Наиболее целесообразно классифицировать регуляторы по таким признакам, которые отражают и их конструктивные осо
бенности. Эти классификации позволяют выявить также стороны регуляторов, которые трудно усмотреть в общей классификации, изложенной в гл. 1.
Регуляторы могут быть классифицированы по способу действия, по виду вспомогательной энергии и т. п.
Согласно первой классификации различают регуляторы прямого и косвенного (непрямого) действия. В регуляторах прямого действия измерительный элемент непосредственно воздействует на регулирующий орган. Эти регуляторы просты по устройству и надежны в работе, однако они обладают рядом недостатков: большая зона нечувствительности, малые пределы регулирования и невозможность дистанционного управления. В регуляторах косвенного действия регулирующий орган перемещается за счет энергии, получаемой от постороннего источника.
По виду вспомогательной энергии регуляторы косвенного действия подразделяются на гидравлические, пневматические, электрические и комбинированные. Гидравлические регуляторы обеспечивают плавное регулирование в широком диапазоне и создают большие усилия на регулирующий орган. Они надежны и удобны в эксплуатации, но имеют ограниченный радиус действия, определяемый длиной гидравлического трубопровода. Пневматические регуляторы обладают рядом положительных качеств, свойственных гидравлическим. Однако они сравнительно легко засоряются и поэтому требуют применения дополнительных воздушных фильтров. Характеристики пневматических регуляторов зависят от температуры и давления окружающей среды. Электрические регуляторы имеют практически неограниченный радиус действия, их работа мало зависит от температуры и давления окружающей среды. При конструировании комбинированных регуляторов стремятся использовать положительные характеристики каждого вида вспомогательной энергии.
По роду действия, т. е. по виду управляющего воздействия на регулирующий орган, различают регуляторы непрерывного и прерывистого (дискретного) действия. В регуляторах непрерывного действия регулирующий сигнал подается на исполнительный механизм непрерывно при наличии отклонения регулируемой величины от заданного значения. В регуляторах прерывистого (дискретного) действия регулирующий сигнал подается на исполнительный механизм через определенные интервалы времени. В паузах регулятор как бы оценивает произведенное им воздействие на регулируемый объект и формирует новый регулирующий сигнал с учетом произведенного воздействия.
По виду регулируемой величины различают регуляторы температуры, давления, расхода, уровня и т. д.
По конструктивному исполнению регуляторы могут быть приборными, аппаратными и агрегатными. Приборные регуляторы содержат измерительное устройство, которое одновременно выдает сигнал на измерительный прибор, регистрирующий значение контролируемой величины, и сигнал управления. К приборным регуляторам относятся электронные потенциометры, автоматические мосты, логометры и т. п.'В регуляторах аппаратного типа вырабатывается только управляющий сигнал. В состав таких регуляторов входят измерительный блок и электронное устройство, формирующие законы регулирования. В регуляторах агрегатного типа преобразовательно-усилительный блок сравнивает сигналы первичного преобразователя и задатчика и формирует выходной сигнал.
-
РЕГУЛЯТОРЫ ПРЕРЫВИСТОГО (ДИСКРЕТНОГО)
ДЕЙСТВИЯ
Регуляторы прерывистого действия подразделяются на позиционные, импульсные и цифровые.
Позиционными (релейными) называют регуляторы, у которых регулирующий орган может занимать определенное число положений. В литейных и термических цехах используются в основном двух- и трехпозиционные регуляторы.
В двухпозиционных регуляторах регулирующий орган может занимать только два положения: больше-меньше, включено- выключено или открыто-закрыто. Количество энергии или вещества, подводимое к объекту или отводимое от объекта при установке регулирующего органа в положение «больше», будет.превышать среднюю потребность, а в положении «меньше» будет ниже нее. Например, при регулировании температуры в электрической печи регулятор при значении регулируемой величины ниже заданного значения включает нагревательные элементы, а при превышении — выключает. Отклонения температуры от заданного значения оказывают влияние на длительность включения и выключения нагревательных элементов. При таком способе регулируемая величина колеблется относительно заданного значения.
Изменение мощности и регулируемой температуры во времени при двухпозиционном регулировании температуры печи показано на рис. 129. Величины и определяют возможные стабильные температуры печи, соответствующие длительному включению нагревательных элементов с мощностями N1 и соответственно. Значения мощностей выбраны таким образом, чтобы заданная температура 4ад находилась в интервале температур Ь и
Основные параметры такого процесса могут быть определены по приближенной формуле
т ^1 + ЛГ2 Т ’
где — отклонение температуры от заданного значения,°С;
209
Рис. 129. Изменение при дпухпозйци- Рис. 130. Графическое изображение онном регулировании: действия импульсного регулятора
а — температуры; б — мощности
Л/, и Л/а — мощности нагревательных элементов, кВт; тц — время запаздывания, с; Г — постоянная времени объекта, с.
Как видно из формулы, колебания регулируемой температуры уменьшаются при уменьшении регулируемой мощности Л/]. — ЛГа, времени запаздывания тц и увеличении постоянной времени объекта Т.
Уменьшение регулируемой МОЩНОСТИ Ыг — Л* вызывает сближение температур 1Х и /2 до заданной температуры /аад.
В тех случаях, когда не требуется высокая точность регулирования, мощность Л/2 можно принимать равной нулю, а мощность N! — равной максимальной мощности, т. е. регулировать по принципу включено-выключено.
Колебание температуры снижается при уменьшении времени полного запаздывания тц. Здесь под запаздыванием понимается не только время запаздывания объекта, но и время запаздывания самого регулятора. Следовательно, колебания температуры могут быть уменьшены путем выбора регулятора с меньшим диапазоном нечувствительности 2Д/Н-
Колебание температуры уменьшается при увеличении постоянной времени объекта Т. Поэтому чем больше емкость объекта, тем благоприятнее осуществляется двухпозиционное регулирование.
Одним из основных недостатков двухпозиционного регулирования является невозможность сочетания быстрого нагрева (для этого необходима большая мощность) и высокой точности регулирования, для которой требуется небольшая избыточная мощность.
Дальнейшее развитие позиционного регулирования пошло в двух направлениях: улучшение свойств двухпозиционного регулирования и переход на трехпозиционное регулирование. Первое направление обеспечивается созданием так называемого прерывистого двухпозиционного регулирования, т. е. введением дополнительных импульсов по первой и второй производным и применение^ экспоненциальных обратных связей. При введении трехпозиционного регулирования колебания регулируемого параметра уменьшаются на 20 ... 30 % по сравнению с колебаниями при двухпозиционном регулировании.
В трехпозиционных регуляторах регулирующий орган может занимать дополнительно еще среднее положение, обеспечивающее подачу энергии нли вещества в объект в количествах, соответствующих его потреблению при нормальной нагрузке и заданном значении регулируемой величины. Таким образом, в трехпозиционных регуляторах включение и выключение мощности осуществляется также ступенчато, но имеется некоторая зависимость между отклонением регулируемой величины от заданного значения и включаемой мощностью. Трехпозиционные регуляторы способны вести регулирование более качественно, чем двухпозиционные.
Позиционные автоматические регуляторы применяются главным образом для регулирования температуры в электрических термических печах.
В регуляторах импульсного действия отклонения регулируемой величины (рис. 130, а) преобразуются в последовательность импульсов, следующих друг за другом через определенные интервалы времени. Импульсы могут отличаться амплитудой, длительностью и полярностью.
В зависимости от характеристики импульсов рассматриваемые регуляторы подразделяются на три группы. К первой группе относятся регуляторы, в которых амплитуда импульсов пропорциональна изменению регулируемой величины (рис. 130, б). Во вторую группу входят регуляторы с преобразованием регулируемой величины в последовательность импульсов, длительность которых зависит от отклонения регулируемой величины (рис. 130,в). Импульсные регуляторы с преобразованием отклонения регулируемой величины в последовательность импульсов с постоянными амплитудами и длительностью, но с переменным знаком, относятся к третьей группе (рис. 130, г). Знак импульсов зависит от изменения знака регулируемой величины. Импульсные регуляторы применяются для регулирования медленно протекающих процессов в объектах регулирования, обладающих большой инерционностью и значительным запаздыванием.
Если при регулировании технологического процесса используется цифровой регулятор или цифровая управляющая машина, то такая система носит название цифровой автоматической системы регулирования. Такие системы рассмотрены в разделе IV.
В соответствии с реализуемым законом регулирования автоматические регуляторы непрерывного действия подразделяются на пропорциональные, интегральные, пропорциональноинтегральные, пропорционально-дифференциальные и пропор- ционально-интегрально-дифференциальные регуляторы.
Пропорциональные регуляторы (П-регуляторы). В П-регуля- торах перемещение регулирующего органа пропорционально отклонению регулируемой величины от заданного значения. Эти регуляторы также называются статическими, потому что в процессе регулирования они все время стремятся «догнать» отклонившуюся от заданного значения регулируемую величину и остановить ее, т. е. прекратить ее дальнейшее отклонение. Для П-регуляторов диапазон регулируемой величины, в пределах которого происходит перемещение регулирующего органа из одного крайнего положения в другое, называют пределом пропорциональности. Предел пропорциональности регулятора является обратной величиной его чувствительности. Чем больше предел пропорциональности регулятора, тем меньше его чувствительность, и наоборот.
Закон, реализуемый П-регулятором, имеет вид
У = К АХ,
где У — выходная величина регулятора (положение регулирующего органа); К — статический коэффициент передачи (усиления) регулятора; АХ — отклонение регулируемой величины.
Разность между минимальными и максимальными установившимися значениями регулируемой величины называют абсолютной статической неравномерностью. Ее наличие у П-регуляторов приводит к тому, что регулируемая величина изменяется по мере изменения нагрузки.
Преимуществами П-регуляторов являются их быстродействие (малое время переходного процесса) и высокая устойчивость процесса регулирования; основным недостатком — наличие остаточного отклонения регулируемой величины, что снижает точность регулирования. Л
П-регуляторы применяют на объектах регулирования с малым самовыравниванием и без самовыравнивания, когда изменение нагрузки незначительно.
Интегральные (астотические) регуляторы (И-регуляторы). И-регуляторы характеризуются перемещением регулирующего органа пропорционально интегралу отклонения регулируемой величины от заданного значения. Иными словами, регулирующей орган перемещается со скоростью, пропорциональной отклонению регулируемой величины, т. е.
йУ!йх = А Х/Ти.
Проинтегрировав это выражение, получим
X
к = (1/ти)|дхат,
о
где Та — время изодрома, представляющее собой время, за которое регулирующий орган переместится из одного крайнего положения в другое при максимальном отклонении регулируемой величины от заданного значения. Оно является параметром настройки И-регулятора.
В структуру И-регулятора входят последовательно включенные усилительные и интегрирующие звенья. В качестве интегрирующего звена обычно используется гидравлический сервопривод или электродвигатель постоянного тока, скорость вращения которого пропорциональна отклонению регулируемой величины.
Использование И-регуляторов исключает остаточное отклонение регулируемой величины при изменениях нагрузки. Эти регуляторы применяют на объектах с переменной нагрузкой, обладающих самовыравниванием и малым запаздыванием. И-регуля- торы работают тем лучше, чем больше степень самовыравнивания и меньше время запаздывания.
Пропорционально-интегральные регуляторы (ПИ-регуляторы). Эти регуляторы также называют изодромными регуляторами или регуляторами с упругой обратной связью. ПИ-регуляторы представляют собой сочетание пропорционального и интегрального регуляторов. Реализуемый ими закон регулирования имеет вид
ь
У = К
Статический коэффициент усиления К и время изодрома ТИ являются параметрами настройки регуляторов.
В ПИ-регуляторах регулирующий орган при наличии отклонения регулируемой величины сначала перемещается быстро (пропорционально отклонению), а затем продолжает свое перемещение в результате интегрального воздействия (обычно медленнее). Пропорциональная часть регулятора стремится как бы «Догнать» и остановить изменение регулируемой величины. По достижении равновесия пропорциональная составляющая прекращает свое влияние на регулирующий орган, а действие интегрирующей составляющей будет продолжаться. В результате этого воздействия регулирующий орган займет такое положение, при котором статическая ошибка будет ликвидирована. Таким образом, наличие в регуляторе пропорционального воздействия убыстряет процесс стабилизации регулируемой величины, а интегральное воздействие снимает остаточное отклонение. В подобных регуляторах пропорциональную функцию выполняет жесткая обратная связь, а интегральную — гибкая (изодромная) обратная связь.
Действие изодрома характеризуется скоростью и временем изодрома. Скорость изодрома — скорость перемещения регулирующего органа под действием интегрального воздействия. Она выражается в процентах его хода в единицу времени. Время изодрома — время, в течение которого происходит изодромное перемещение регулирующего органа на 1 % его хода. Следовательно, время изодрома есть величина, обратная относительной скорости изодрома. Малому времени изодрома соответствует большая скорость регулирования, и наоборот.
ПИ-регуляторы могут поддержать в установившемся режиме постоянное значение регулируемой величины независимо от нагрузки и положения регулирующего органа. Эти регуляторы способны работать на объектах с различными свойствами.
Пропорционально-дифференциальные регуляторы (ПД-регуля- торы). ПД-регуляторы обеспечивают перемещение регулирующего органа как пропорционально отклонению регулируемой величины, так и пропорционально скорости отклонения. Подобные регуляторы еще при подходе регулируемой величины к заданному значению осуществляют действия, препятствующие переходу величины за пределы заданного значения.
В начальный момент рассогласования скорость отклонения регулируемой величины проявляется более значительно, чем изменение величины регулирующего параметра. Поэтому в закон регулирования ПД-регуляторов вводят предваряющее воздействие, что эффективно сказывается на качестве регулирования. Закон регулирования ПД-регуляторов описывается уравнением
У = К [АХ ± Тв (1 (ДХ)/Л],
где Тп — время предварения (дифференцирования). Знак плюс или минус указывает на то, что предварение может быть положительным или отрицательным.
Поскольку скорость изменения регулируемой величины есть первая производная ее изменения во времени, то такие регуляторы называют регуляторами по первой производной. Они применяются при регулировании быстропротекающих процессов.
Пропорционально-интегрально-дифференциальные регуляторы (ПИД-регуляторы). Эти регуляторы известны также под названием изодромные с предварением. В ПИД-регуляторах регулирующий орган перемещается пропорционально отклонению, интегралу и скорости отклонения регулируемой величины. Работу этих регуляторов можно рассматривать как совместное действие статического и астатического регуляторов с учетом скорости изменения регулируемой величины. Закон регулирования ПИД- регуляторов Выражается дифференциальным уравнением
АХ + (1/7’и) [ АХ с1х ± Тп& (ДХ)/йх
Параметрами настройки ПИД-регуляторов служит статический коэффициент передачи К, время изодрома Тя и время предварения Та.
Приставка предварения вырабатывает сигнал, который заставляет регулирующий орган перемещаться с некоторым временным опережением, возрастающим с увеличением скорости изменения регулируемой величины. Предварение может осуществляться с помощью подключенных на вход регулятора элементов, измеряющих скорость изменения регулируемой величины или введением дополнительной обратной связи.
ПИД-регуляторы сочетают свойства всех рассмотренных выше регуляторов. Они удовлетворяют наиболее трудным условиям и требованиям регулирования.
-
ВЫБОР ТИПА РЕГУЛЯТОРОВ И ПАРАМЕТРОВ
ЕГО НАСТРОЙКИ
Применение регуляторов с различными характеристиками для одного и того же объекта приводят к разным результатам. Поэтому тип регулятора необходимо выбирать с учетом свойств объектов.
При отсутствии сведений о динамических свойствах объекта регуляторы следует выбирать по аналогии с действующими объектами или на основании предположительных сведений о свойствах объекта.
Выбор регулятора обычно начинают с определения характера его действия: позиционный, импульсный и непрерывный.
Позиционные регуляторы применяют в объектах с малым запаздыванием или постоянной нагрузкой. Они могут быть рекомендованы для одноемкостных объектов без самовыравнивания.
Например, многие электрические нагревательные печи оснащены двухпозиционными регуляторами температуры. Это объясняется их простотой при достаточной для многих процессов термической обработки точности поддержания заданной температуры нагрева. Точность регулирования температуры повышается при использовании трехпозиционных регуляторов. Однако двух- и трехпозиционное регулирование температуры малопригодно для газовых и мазутных печей, так как при полном выключении подачи топлива и воздуха в рабочем пространстве будут наблюдаться резкое падение давления и подсос холодного воздуха. Позиционные регуляторы могут быть использованы для регулирования давления в объектах с большой емкостью и малым запаздыванием.
Импульсные регуляторы применяют в объектах без большого запаздывания, обладающих средней емкостью при постоянной или плавно меняющейся нагрузке.
П-регуляторы рекомендуются для регулирования объектов, допускающих некоторые отклонения регулируемой величины от заданного значения. При этом нагрузка объектов не должна иметь резких колебаний, но может изменяться плавно. П-регуляторы большей частью используются для одноемкостных объектов.
И-регуляторы можно применять только при регулировании объектов с большой степенью самовыравнивания, иначе система может оказаться неустойчивой. Они используются с различной емкостью, с небольшим запаздыванием и при плавных изменениях нагрузки.
ПИ-регуляторы рекомендуются для регулирования процессов в самых разнообразных объектах, т. е. в объектах с любой емкостью, с большим запаздыванием и с большими, но медленно изменяющимися нагрузками. Например, их широко используют для регулирования температуры в топливных печах, а также для регулирования расхода газа или жидкости. Поскольку ПИ- регуляторы обладают достаточным быстродействием и способны выводить регулируемую величину на заданное значение, их применяют чаще других.
ПД-регуляторы используются в объектах со средней емкостью, при большом времени запаздывания и при малых изменениях нагрузки.
ПИД-регуляторы применяются в объектах с любой емкостью, с большим запаздыванием и при больших и резких изменениях нагрузки, т. е. в тех случаях, когда П- и ПИ-регуляторы не могут справиться с обеспечением требуемого Качества регулирования.
Рассмотренные рекомендации выбора регуляторов носят общий характер. Более точный выбор регулятора возможен лишь с учетом основных свойств объекта регулирования. Поэтому для действующих объектов при наличии кривых разгона или для проектируемых объектов, кривые разгона для которых сняты с действующих аналогов, выбор регуляторов производится на основании определенных расчетов.
Регулятор для объекта регулирования с известными основными свойствами выбирают следующим образом.
-
Должны быть известны или определены по кривой разгона основные параметры объекта: время полного запаздывания тп, постоянная времени объекта Т, степень самовыравнивания р и максимальное возмущение р>.
-
Характер действия регулятора определяется с помощью основного характеристического соотношения, т. е. отношения времени полного запаздывания т„ к постоянной времени объекта Т. Если тП/Т < 0,2, то можно применять позиционный импульсный регулятор; если тп/Т > 0,2, то следует выбрать регулятор непрерывного действия. Далее все расчеты проводятся для регулятора непрерывного действия.
-
Задаются оптимальным характером типового переходного процесса. Рекомендуется задавать апериодический процесс, когда требуется исключить влияние регулирующего воздействия данной системы на другие регулируемые величины сложного объекта
Рис. 131. Показатели различных типов регуляторов при 20 %-иом перерегулировании:
1 — И-регулятор; 2 — П-регулятор; 3 — ПИ-регулятор; 4 — ПИД-регулятор
Рис. 132. Влияние характеристического отношения на остаточное отклонение:
1 — апериодический процесс; 2 — 20 %- ное перерегулирование
Таблица 17
регулирования. Колебательный переходный процесс применяется в тех случаях, когда технологический процесс объекта допускает перерегулирование контролируемой величины.
-
Исходя из производственных условий, задаются допустимым динамическим отклонением регулируемой величины и допустимым остаточным ее отклонением Хост по окончании переходного процесса.
-
Вычисляют динамический коэффициент регулирования /?д, который характеризует степень воздействия регулятора на потенциальное отклонение регулируемой величины (при отсутствии регулятора):
я« = Ххдад = Щ - х0),
где К0<5 — (Хк — Х0)/ц — коэффициент передачи объекта; Хк и Х0 — конечное и данное значения регулируемой величины; (А — максимальное возмущающее воздействие в % от хода регулирующего органа.
-
По кривым, приведенным на рис. 131, выбирают тип регулятора непрерывного действия.
-
Для выбранного типа регулятора по кривым (рис. 132) определяют остаточное отклонение 6' в процентах, а затем рассчитывают АХ0СТ в единицах регулируемой величины по формуле
АХ0СТ = 6'/(оСц
и сравнивают его с допустимым значением. Если Хост превышает допустимое значение, то следует выбрать другой тип регулятора.
Формулы для определения параметров настройки регуляторов Тип регулятора Типовой процесс регулирования Апериодический 20 %-ное перерегулирование И-регулятор Кр = 1/(4,5КобП Кр= 1/(1,7КобЛ П-регулятор Кр= 0,3 /(Ко6т/Г) Кр=0,7/(Кобт/Т) ПИ-регулятор К р = 0,6/ (Д'0бх/7'); Тп = 0,6Г кр= 0,7/(Коб*/Л; Ти = 0,7 Т ПИД-регулятор Кр = 0,95/(/(овт/Г); Ги= 2,4т; Г„= 0,4т Кр= 1,2/ (К0бх/Т)\ Ти — 2; т; Тц — 0,4т Примечание. В этих формулах — коэффициент передачи регулитора; Тв — время изодрома; Тп — время предварения.
Выбрав соответствующий тип регулятора, который обеспечивает его успешную работу в системе автоматического регулирования, приступают к определению оптимальных значений параметров настройки регулятора. Для регуляторов П- и И-типа параметром настройки является только коэффициент передачи регулятора Кр, для ПИ-регулятора в качестве второго параметра добавляется время изодрома Ти; для ПИД-регулятора учитывается еще третий параметр — время предварения Та.
Определение оптимальных значений параметров настройки регуляторов возможно несколькими методами: с помощью расчета по приближенным формулам, по графическим зависимостям и путем организованного поиска.
Рассчитать оптимальные значения параметров настройки возможно, если известны конкретные величины свойств объектов регулирования: постоянная времени объекта Т, время запаздывания тп и коэффициент передачи объекта К0ц.
Для различных типов регуляторов формулы расчета приведены в табл. 17.
Для определения значений параметров настройки с помощью графиков необходимо знать свойства объекта: постоянную времени объекта Т, время полного запаздывания тп и коэффициент передачи объекта /Соб.
Графики строят в логарифмических координатах. По осям абсцисс откладывают характеристическое отношение ха/Т, По осям ординат — значения настройки параметров регуляторов.
В методе организованного поиска оптимальная настройка параметров определяется путем экспериментального исследования систем автоматического регулирования, состоящей из объекта регулирования и выбранного регулятора.
Контрольные вопросы а задания
-
Какое устройство называется регулятором?
-
По каким признакам можно классифицировать регуляторы?
-
Как работают позиционные регуляторы?
-
Какие вы знаете регуляторы непрерывного действия?
-
Как работают П- и И-регуляторы?
-
Как работают ПИ- и ПИД-регуляторы?
-
Что такое закон регулирования?
-
Изложите общие рекомендации по выбору регуляторов различных типов.
-
Какие параметры настройки используются для регуляторов непрерывного действия?
-
Изложите общие принципы определения оптимальных настроен регуляторов непрерывного действия.
- Глава 1. Общие сведения
- Основные понятия и определения
- Классификация систем автоматического управления
- Элементы автоматических систем
- Глава 2. Первичные преобразователи
- Потенциометрические первичные
- Индуктивные первичные преобразователи
- Емкостные первичные преобразователи
- Тензометрические первичные
- Глава 3. Усилители и стабилизаторы
- Электромеханические и магнитные усилители
- Электронные усилители
- Стабилизаторы
- Глава 4. Переключающие устройства и распределители
- Электрические реле
- Реле времени
- Глава 5. Задающие и исполнительные устройства
- Глава 6. Общие сведения об измерении и контроле
- Глава 7. Контроль температуры
- Глава 8. Контроль давления и разрежения
- Глава 9. Контроль расхода, количества и уровня
- Глава 11. Системы автоматики
- Глава 12. Автоматическая блокировка и защита в системах управления
- Глава 13. Системы автоматического контроля и сигнализации
- Глава 14. Системы автоматического
- Глава 15. Объекты регулирования и их свойства
- Глава 16. Типы регуляторов
- Глава 17. Конструкции и характеристики регуляторов
- Раздел IV
- Глава 18. Общая характеристика
- Глава 19. Математическое и программное обеспечение микроЭвм
- Глава 20. Внешние устройства микроЭвм
- Глава 21. Применение микропроцессорных систем
- Раздел V
- Глава 22. Общие сведения
- Глава 23. Конструкции промышленных роботов
- Глава 25. Роботизация промышленного производства
- Раздел IV
- Глава 1н, общая характеристика микропроцессорных
- 4. Гидравлические и пневматические