Электронные усилители
К электронным ламповым и полупроводниковым усилителям относятся устройства систем автоматики, в которых используются многоэлектродные лампы или полупроводниковые приборы, значение активного сопротивления которых зависит от интенсивности или полярности электрического поля.
Рис. 14. Схемы электронных усилителей: а — электровакуумных постоянного тока; б — переменного тока; в — полупроводниковых с общей базой; г — с общим коллектором; д — с общим эмиттером
д)
Схема простейшего однокаскадного усилителя на электронной лампе показана на рис. 14, а. Входной сигнал {/вх подается на сетку электронной лампы V, в анодную цепь которой включен резистор (нагрузка) £?а == /?н. При изменении значения ивх будет меняться значение анодного тока /а, а следовательно, и значение выходного напряжения ивых, равного падению напряжения на нагрузочном (анодном), резисторе Цп от протекания анодного тока. В этом и заключается усилительный эффект. Резистор Ш служит для ограничения сеточных токов. Резистор Я2 введен для стабилизации выходного сопротивления усилителя. Рассмотренная схема является нереверсивной.
Схема простейшего усилителя переменного тока с трансформаторным выходом (рис. 14, б) отличается от схемы усилителя постоянного тока только тем, что нагрузочный резистор не является одновременно анодным резистором /?а, а включен в анодную цепь через трансформатор, благодаря чему выходное напряжение 1/ъыж содержит лишь переменную составляющую.
Применяемые в системах автоматики'усилители на вакуумных лампах, в большинстве случаев миниатюрного (пальчикового) типа, выгодно отличаются от прочих видов усилителей ничтожно малой входной мощностью и незначительной инерционностью. Недостатком электронных ламповых усилителей являются низкий КПД и небольшая выходная мощность, а также ограниченные надежность и срок службы. Они широко используются в системах автоматики для предварительного усиления сигналов, полученных от преобразователей. Предельная выходная мощность не превышает 100 Вт.
Для построения полупроводниковых усилителей в качестве управляющих устройств используют полупроводниковые триоды (транзисторы), изготовляемые из германия или кремния с соответствующими примесями.
Транзисторы могут включаться в усилительные схемы тремя различными способами: с обшей базой, с общим коллектором и общим эмиттером.
Схема полупроводникового усилителя с общей базой (рис. 14, в) соответствует редко применяемой в автоматике схеме электронного усилителя с общей сеткой. В этих усилителях электрод базы является общим для входной и выходной цепей. Выходное напряжение находится в фазе с входным. Коэффициент усиления по току меньше единицы, а по напряжению много больше единицы. Усилители, построенные по такому принципу, используют в качестве входного каскада по отношению к преобразователю с низким выходным сопротивлением.
В полупроводниковом усилителе с общим коллектором (рис. 14, г) коэффициент усиления по току на много больше единицы, а по напряжению — меньше единицы. Резисторы /?/ и составляют делитель напряжения, с которого снимается напряжение смещения. Усилители, построенные по такой схеме, применяют в качестве первого каскада усиления для согласования включения преобразователя с высокоомным выходом или в качестве выходного каскада при работе с низкоомной нагрузкой.
Схема с общим эмиттером (рис. 14, (?) соответствует наиболее распространенной схеме электронного усилителя с общим катодом. В схеме резистор £?н является нагрузочным в цепи коллектора, а резисторы Я1 и Я2 образуют делитель напряжения, с которого снимается напряжение смещения. Схема с общим эмиттером получила наибольшее практическое применение. Она обеспечивает высокий коэффициент усиления по ,мощности и току и имеет сравнительно большое входное сопротивление,
В настоящее время транзистор'ные усилители вытесняют ламповые усилители из многих сфер применения. Это объясняется тем, что срок службы транзисторов составляет несколько десятков тысяч часов, а аварийные выходы транзисторов при соответствующем температурном режиме весьма редки.
Рис. 15. Схемы пневматических усилителей дроссельного типа:
о — с дросселем; б — с соплом-иаслонкой
личия. Если в пневматических усилителях используется сжатый воздух, то в гидравлическом усилителе — жидкость под давлением (чаще масло).
Различают три типа гидравлических усилителей: золотниковые, дроссельного типа и струйные.
В золотниковых гидравлических усилителях входной сигнал, открывая или закрывая золотник или вентиль, изменяет поступление вспомогательной энергии (масла под давлением) в исполнительный механизм.
В усилителях дроссельного типа (рис. 15, а, б) выходное давление Рг рабочей жидкости зависит от перемещения X дросселя 1 или заслонки 2 при постоянном давлении Рх.
Принцип работы струйного усилителя (рис. 16) заключается в том, что кинетическая энергия струи масла, направленная в приемное сопло, преобразуется в потенциальную энергию давления. Давление в сопле зависит от положения трубки. В корпусе 1 усилителя расположена струйная трубка 2 с сопловой насадкой 6. С одной стороны трубка связана с толкателем преобразователя 7, а с другой — с пружиной задатчика 4. Сжатие пружины регулируется винтом 3. Струйная трубка сообщается каналом 9 с масляным насосом и может поворачиваться на неко- ' торый угол вокруг оси 0. Расширя
ющиеся сопла 5 соединены трубопроводами с обеими полостями цилиндра двойного действия исполнительного механизма. Трубка 8 предназначена для слива масла в бак, где установлен насос.
Если регулируемый параметр соответствует заданному значению, то трубка находится в нейтральном положении и струя рабочей жидкости оди- ‘наково перекрывает оба приемных Рис. 16. Схема гидравличе- сопла., В полостях цилиндра создается ского струйного усилителя одинаковое давление и поршень ис
полнительного механизма не перемещается. При отклонении регулируемого параметра от заданного значения, т. е. прн появлении разности усилий со стороны задатчика и чувствительного элемента, струйная трубка поворачивается в сторону одного из приемных сопел, в котором давление возрастает, что и вызывает перемещение поршня.
К преимуществам усилителей подобного типа можно отнести простоту конструкции, отсутствие повышенных требований к очистке масла и высокую эксплуатационную надежность. Основным недостатком усилителя являются неполное использование мощности потока рабочей жидкости и неизбежная ее утечка.
Пневматические усилители по принципу аналогичны гидравлическим и имеют такие же преимущества и недостатки.
Гидравлические и пневматические усилители находят применение в автоматических системах регуляторов давления и расхода.
- Глава 1. Общие сведения
- Основные понятия и определения
- Классификация систем автоматического управления
- Элементы автоматических систем
- Глава 2. Первичные преобразователи
- Потенциометрические первичные
- Индуктивные первичные преобразователи
- Емкостные первичные преобразователи
- Тензометрические первичные
- Глава 3. Усилители и стабилизаторы
- Электромеханические и магнитные усилители
- Электронные усилители
- Стабилизаторы
- Глава 4. Переключающие устройства и распределители
- Электрические реле
- Реле времени
- Глава 5. Задающие и исполнительные устройства
- Глава 6. Общие сведения об измерении и контроле
- Глава 7. Контроль температуры
- Глава 8. Контроль давления и разрежения
- Глава 9. Контроль расхода, количества и уровня
- Глава 11. Системы автоматики
- Глава 12. Автоматическая блокировка и защита в системах управления
- Глава 13. Системы автоматического контроля и сигнализации
- Глава 14. Системы автоматического
- Глава 15. Объекты регулирования и их свойства
- Глава 16. Типы регуляторов
- Глава 17. Конструкции и характеристики регуляторов
- Раздел IV
- Глава 18. Общая характеристика
- Глава 19. Математическое и программное обеспечение микроЭвм
- Глава 20. Внешние устройства микроЭвм
- Глава 21. Применение микропроцессорных систем
- Раздел V
- Глава 22. Общие сведения
- Глава 23. Конструкции промышленных роботов
- Глава 25. Роботизация промышленного производства
- Раздел IV
- Глава 1н, общая характеристика микропроцессорных
- 4. Гидравлические и пневматические