3.5 Комплексный коэффициент передачи и частотныехарактеристики
Рассмотрим случай, когда на вход системы РА действует гармонический сигнал с амплитудой Xm и частотой :
. (3.0)
Сигнал на выходе системы при нулевых начальных условиях в соответствии с выражением (3.5) имеет вид
, (3.0)
изображению (3.23) соответствует оригинал
. (3.0)
В устойчивой системе все полюсы имеют отрицательные вещественные части, поэтому в установившемся режиме выходной сигнал имеет вид
, (3.0)
т.е. на выходе системы также получается гармонический сигнал, частота которого равна частоте входного сигнала.
Отношение гармонического сигнала на выходе в установившемся режиме к гармоническому сигналу на входе называют комплексным коэффициентом передачи или частотной характеристикой системы РА. Из выражения (3.25) следует, что
. (3.0)
Частотная характеристика системы РА может быть представлена в виде
, (3.0)
где – вещественная частотная характеристика;– мнимая частотная характеристика.
Частотная характеристика системы РА в показательной форме имеет вид
, (3.0)
где – амплитудно-частотная характеристика;– фазочастотная характеристика.
Амплитудно-частотная характеристика (АЧХ) определяет зависимость от частоты отношения амплитуды сигнала на выходе системы к амплитуде сигнала на входе. Фазочастотная характеристика (ФЧХ) устанавливает зависимость сдвига фаз между входным и выходным сигналами.
На плоскости комплексного переменного частотная характеристика изображается в виде вектора (рис. 3.3), который при изменении частоты от нуля до бесконечности описывает кривую, называемую амплитудно-фазовой характеристикой или годографом частотной характеристики системы РА.
Рис. 3.3 Годограф частотной характеристики системы РА
В инженерной практике применяют логарифмические амплитудно-частотные характеристики (ЛАЧХ). Логарифмическая АЧХ имеет зависимость
. (3.0)
При построении ЛАЧХ (рис. 3.4) по оси ординат откладывают значение (3.29) в децибелах, а по оси абсцисс – частота в логарифмическом масштабе.
Рис. 3.4 К описанию логарифмической частотной характеристики
При построении логарифмической ФЧХ по оси ординат откладывают ее значение в радианах, используя десятикратное изменение частоты, называемой изменением на декаду, а двукратное – изменением на октаву. В ряде случаев возможно пренебрежение кривизной ЛАЧХ на небольших участках частот, поэтому построение ЛАЧХ производится отрезками прямых линий – асимптотами. Основным достоинством ЛАЧХ является возможность их построения без вычислений.
Наиболее характерный вид имеют ЛАЧХ при следующих значениях модуля () частотной передаточной функции:
Рис. 3.5 Типовые асимптотические ЛАЧХ
а) = k. В этом случае = 20 lg k есть постоянная величина и ЛАЧХ представляет собой прямую, параллельную оси абсцисс (рис. 3.5, а);
б) . В этом случае = 20 lg k – 20 lg . При = 1 имеем = 20 lg k и на протяжении одной декады (с увеличением в 10 раз) L уменьшается на 20 дБ. ЛАЧХ представляет собой прямую с наклоном –20 дБ/дек, проходящую через точку B с координатами [1; 20 lg k] (рис. 3.5, б).
в) = k. В этом случае = 20 lg k + 20 lg . При = 1 имеем = 20 lg k и на протяжении одной декады (с увеличением в 10 раз) L увеличивается на 20 дБ. ЛАЧХ представляет собой прямую с наклоном +20 дБ/дек, проходящую через точку B с координатами [1; 20 lg k] (рис. 3.5, в).
г) . В этом случае = 20 lg k –10 lg (1+2 T2). При малых частотах 2T2 << 1 и 20 lg k. Это низкочастотная асимптота, параллельная оси абсцисс. При больших частотах 2T2 >> 1 и 20 lg k –10 lg T. Это высокочастотная асимптота с отрицательным наклоном 20 дБ/дек. Следовательно, асимптотическая ЛАЧХ образуется двумя асимптотами, которые сопрягаются при частоте (рис. 3.5, г), так как при этой частоте удовлетворяются уравнения обеих асимптот.
д) . В этом случае = 20 lg k +10 lg (1+2 2). ЛАЧХ образуется двумя асимптотами, которые сопрягаются на частоте , но высокочастотная асимптота имеет положительный наклон +20 дБ/дек (рис. 3.5, д).
е) , где <1. В данном случае = 20 lg k – 10 lg [1+22 T2 (22 – 1) + +4 T4]. На малых частотах 20 lg k и на высоких частотах 20 lg k –40 lg T. Асимптотическая ЛАЧХ, как и в двух предыдущих случаях, составляется двумя асимптотами, которые сопрягаются при частоте с = 1/Т. Низкочастотная асимптота параллельна оси абсцисс, а высокочастотная имеет наклон минус 40 дБ/дек (рис. 3.5, е).
ж) , где <1. В этом случае = 20 lg k + 10 lg [1+22 2 (22 – 1) + 4 4]. Асимптотическая ЛАЧХ составляется двумя асимптотами, которые сопрягаются при частоте с = 1/. Низкочастотная асимптота 20 lg k параллельна оси абсцисс, а высокочастотная имеет наклон + 40 дБ/дек (рис. 3.5, ж).
- Министерство образования и науки Российской Федерации
- 1Введение
- 1.1 Предмет изучения теории управления и радиоавтоматики
- 1.2 Управление, регулирование и классификация систем автоматического регулирования
- 2Функциональные и Структурные схемы систем радиоавтоматики
- 2.1 Система автоматической регулировки усиления
- 2.2 Система автоматической подстройки частоты
- 2.3 Система фазовой автоподстройки частоты
- 2.4 Система автоматического сопровождения цели рлс
- 2.5 Система измерения дальности рлс
- 2.6 Обобщенная структурная схема систем радиоавтоматики
- 3Дифференциальные уравнения и передаточные функции систем радиоавтоматики
- 3.1 Общие дифференциальные уравнения систем радиоавтоматики
- 3.2 Передаточная функция систем радиоавтоматики
- 3.3 Переходная и импульсная переходная функции
- 3.4 Выходной сигнал системы радиоавтоматики при произвольном воздействии
- 3.5 Комплексный коэффициент передачи и частотныехарактеристики
- 4 Элементы систем радиоавтоматики и типовые радиотехнические звенья
- 4.1 Проблема моделирования элементов систем радиоавтоматики
- 4.2 Элементы систем радиоавтоматики
- 4.2.1 Фазовые детекторы
- 4.2.2 Частотные дискриминаторы
- 4.2.3 Угловые дискриминаторы
- На выходе одного из фазовых детекторов возникает напряжение
- 4.2.4 Временные дискриминаторы
- 4.2.5 Исполнительные устройства
- 4.3 Типовые радиотехнические звенья
- 4.4 Виды соединения типовых радиотехнических звеньев и структурные преобразования сложных схем систем радиоавтоматики
- 4.5 Передаточные функции сложных многоконтурныхсистем
- 4.6 Определение параметров элементов систем
- 5 Устойчивость линейных систем радиоавтоматики
- 5.1 Основные понятия и определения
- 5.2 Условие устойчивости линейных систем
- 5.3 Критерии устойчивости
- 5.3.1 Критерий устойчивости Гурвица
- 5.3.2 Критерий устойчивости Михайлова
- 5.3.3 Критерий устойчивости Найквиста
- 5.3.4 Логарифмическая форма критерия Найквиста
- 5.4 Области и запасы устойчивости
- 5.4.1 Основные понятия и определения
- 5.4.2 Частотные оценки запасов устойчивости
- 5.4.3 Корневые оценки запасов устойчивости
- 5.4.4 МетодD-разбиения
- Пример. Определить область устойчивости системы по коэффициенту усиления (рис. 5.21).
- 6 Анализ качества систем радиоавтоматики
- 6.1 Постановка задачи исследования качества работы систем радиоавтоматики
- 6.2 Показатели качества переходного процесса
- 6.3 Частотные показатели качества
- 6.4 Анализ точности работы систем радиоавтоматики
- 7Основы Проектирования систем радиоавтоматики
- 7.1 Постановка задачи
- 7.2 Синтез передаточной функции разомкнутой системы радиоавтоматики
- 7.3 Определение передаточных функций корректирующих устройств
- 7.4 Синтез систем с неполной информацией о воздействиях
- 7.5 Комплексные системы
- Литература