2.3 Система фазовой автоподстройки частоты
Системы фазовой автоподстройки частоты применяются в радиоприемных устройствах, перестраиваемых по частоте генераторов высокостабильных колебаний и других устройств. Функциональная схема системы ФАПЧ (рис. 2.11) предназначена для стабилизации частоты подстраиваемого генератора (ПГ) по сигналу высокостабильного эталонного генератора (ЭГ).
Рис. 2.11 Функциональная схема системы ФАПЧ
Объектом управления в системе ФАПЧ является ПГ, частота колебаний (или фаза) напряжения которого изменяется в зависимости от напряжения, вырабатываемого управляющим элементом (УЭ), при этом напряжение ПГ остается неизменным. Частота напряжения ПГ является выходным сигналом системы ФАПЧ, на которую действует напряжение от эталонного генератора с частотой э. Этот сигнал является управляющим воздействием. Измерителем рассогласования является фазовый детектор (ФД), выходной сигнал которого является нелинейной периодической функцией разности фаз сигналов, подаваемых от ЭГ и ПГ. Сигнал с ФД через ФНЧ подается на УЭ, который перестраивает частоту ПГ, приближая ее к частоте ЭГ. В установившемся режиме в системе устанавливается постоянная разность фаз между напряжениями uэ и uг, при этом напряжение на выходе ФД также будет постоянным, в результате чего частота сигнала с ПГ окажется равной частоте сигнала ЭГ.
Начальное рассогласование от ЭГ и ПГ определяется как
н = э – гн, (2.0)
где гн – начальная частота сигнала ПГ.
После включения системы ФАПЧ частота сигнала ПГ будет описываться выражением:
г = гн – гу. (2.0)
Частотная составляющая гу возникает из-за перестройки частоты ПГ и определяется выражением
гу = kг kуэ uфд = kг kуэ kд F(), (2.0)
где kг – коэффициент передачи ПГ по частоте;
kуэ – коэффициент передачи УЭ;
kд – коэффициент передачи ФД, равным максимальному напряжению на выходе ФД;
– разность фаз напряжений ЭГ и ПГ;
F() – дискриминационная характеристика.
Важным параметром систем ФАПЧ является величина полосы захвата. Под полосой захвата понимается диапазон первоначальных расстроек между частотами сигнала и подстраиваемого генератора, в пределах которого обеспечивается переход к режиму слежения за частотой.
Для оценки максимально допустимого рассогласования используется полоса удержания, определяемая выражением
уд = kг kуэ kд, (2.0)
результат имеет размерность круговой частоты. С учетом (2.13) и (2.14) частота ПГ может быть определена по следующей формуле
г = гн + уд. F(). (2.0)
Разность фаз сигналов ЭГ и ПГ определяется выражением
, (2.0)
Из формулы (2.16) следует, что производная
(2.0)
Уравнение (2.17) является основным дифференциальным уравнением системы ФАПЧ, показывающее, что в любой момент времени алгебраическая сумма разности частот и расстройки является постоянной величиной, равной начальному рассогласованию частот сигналов ЭГ и ПГ.
Отличие структурной схемы системы ФАПЧ, приведенной на (рис. 2.12), от системы АПЧ (рис. 2.10) состоит в наличии в системе ФАПЧ интегрирующего звена , с передаточной функциейW=1/p, производящего математическую операцию интегрирования в соответствии с формулой (2.16).
Рис. 2.12 Структурная схема системы ФАПЧ
Интегрирующее звено и возмущающее воздействие n(t) учитывают влияние на качество работы системы флуктуационной составляющей напряжения, а воздействие г – влияние нестабильности частоты ПГ.
- Министерство образования и науки Российской Федерации
- 1Введение
- 1.1 Предмет изучения теории управления и радиоавтоматики
- 1.2 Управление, регулирование и классификация систем автоматического регулирования
- 2Функциональные и Структурные схемы систем радиоавтоматики
- 2.1 Система автоматической регулировки усиления
- 2.2 Система автоматической подстройки частоты
- 2.3 Система фазовой автоподстройки частоты
- 2.4 Система автоматического сопровождения цели рлс
- 2.5 Система измерения дальности рлс
- 2.6 Обобщенная структурная схема систем радиоавтоматики
- 3Дифференциальные уравнения и передаточные функции систем радиоавтоматики
- 3.1 Общие дифференциальные уравнения систем радиоавтоматики
- 3.2 Передаточная функция систем радиоавтоматики
- 3.3 Переходная и импульсная переходная функции
- 3.4 Выходной сигнал системы радиоавтоматики при произвольном воздействии
- 3.5 Комплексный коэффициент передачи и частотныехарактеристики
- 4 Элементы систем радиоавтоматики и типовые радиотехнические звенья
- 4.1 Проблема моделирования элементов систем радиоавтоматики
- 4.2 Элементы систем радиоавтоматики
- 4.2.1 Фазовые детекторы
- 4.2.2 Частотные дискриминаторы
- 4.2.3 Угловые дискриминаторы
- На выходе одного из фазовых детекторов возникает напряжение
- 4.2.4 Временные дискриминаторы
- 4.2.5 Исполнительные устройства
- 4.3 Типовые радиотехнические звенья
- 4.4 Виды соединения типовых радиотехнических звеньев и структурные преобразования сложных схем систем радиоавтоматики
- 4.5 Передаточные функции сложных многоконтурныхсистем
- 4.6 Определение параметров элементов систем
- 5 Устойчивость линейных систем радиоавтоматики
- 5.1 Основные понятия и определения
- 5.2 Условие устойчивости линейных систем
- 5.3 Критерии устойчивости
- 5.3.1 Критерий устойчивости Гурвица
- 5.3.2 Критерий устойчивости Михайлова
- 5.3.3 Критерий устойчивости Найквиста
- 5.3.4 Логарифмическая форма критерия Найквиста
- 5.4 Области и запасы устойчивости
- 5.4.1 Основные понятия и определения
- 5.4.2 Частотные оценки запасов устойчивости
- 5.4.3 Корневые оценки запасов устойчивости
- 5.4.4 МетодD-разбиения
- Пример. Определить область устойчивости системы по коэффициенту усиления (рис. 5.21).
- 6 Анализ качества систем радиоавтоматики
- 6.1 Постановка задачи исследования качества работы систем радиоавтоматики
- 6.2 Показатели качества переходного процесса
- 6.3 Частотные показатели качества
- 6.4 Анализ точности работы систем радиоавтоматики
- 7Основы Проектирования систем радиоавтоматики
- 7.1 Постановка задачи
- 7.2 Синтез передаточной функции разомкнутой системы радиоавтоматики
- 7.3 Определение передаточных функций корректирующих устройств
- 7.4 Синтез систем с неполной информацией о воздействиях
- 7.5 Комплексные системы
- Литература