3.2.1 Одноканальное измерение угловой координаты
Системы измерения угловых координат q( q = b или q=e), иначе системы пеленгации, могут содержать один или несколько приемных каналов. Соответственно этому методы пеленгации делятся на одноканальные и многоканальные.
Одноканальные методы пеленгации основаны на использовании зависимости амплитуды принятого сигнала от разности углов (qМ —qЦ) между направлением максимума результирующей диаграммы и направлением прихода отраженных сигналов.
Пусть обзор по угловой координате q производится с постоянной скоростью WА, так что положение максимума результирующей диаграммы qМ = WАt. При этом амплитуда отраженного сигнала на входе приемника
(3.4)
где tц = qц/WА — момент пересечения максимумом диаграммы направления на цель.
В случае импульсного излучения на входе приемника образуется пачка радиоимпульсов с огибающей (3.4).
Вначале рассмотрим обработку нефлюктуирующей пачки импульсов со случайными начальными фазами. Полагая угловую координату цели равной qЦ = WАtц логарифм отношения правдоподобия представим в виде
(3.5)
В приведенном выражении Эi(tц) и Zi(tц) — энергия и модуль корреляционного интеграла для i-го импульса пачки, время запаздывания огибающей которой равно tц. Пусть форма импульсов сигнала описывается функцией U(t). Поскольку огибающая формируется в соответствии с результирующей диаграммой направленности , выражение для комплексной амплитуды i-го радиоимпульса может быть представлено в виде
, (3.6)
где ti — момент прихода i-го импульса.
Считая, что импульсы имеют малую длительность и форма их огибающей не искажается из-за перемещения диаграммы направленности за время этой длительности, заменим в (3.6) разность (t — tц) на (ti — tц). Тогда получим
.
Величины Эi (tц) и Zi (tц) в выражении (3.5) можно при этом представить в виде
(3.7)
Здесь Э0 —энергия одного радиоимпульса, рассчитанная для случая, когда цель расположена на оси диаграммы направленности антенны; Z0i — модуль корреляционного интеграла, который вырабатывается без учета модуляции диаграммой направленности антенны,
Оптимальная оценка времени запаздывания пачки определяется из условия
, (3.8)
где N0 – спектральная плотность шума;
I0- модифицированная функция Бесселя первого рода нулевого порядка.
Позволяя синтезировать схему обработки, условие (3.8) приводит, однако, к слишком сложному ее виду. Схема упрощается, если амплитуды импульсов достаточно большие или малые .
Рассмотрим вначале первый случай >>1 случай сильного сигнала. Пользуясь линейным асимптотическим представлением ln I0 (и) u при и >> 1, условие оптимальности оценки в соответствии с выражением (3.8) приведем к виду
(3.9)
Выражение (3.9) соответствует проведению оптимальной обработки в два этапа. На первом этапе (рис. 3.13) радиоимпульсы пачки усиливаются линейной частью оптимального для них приемника. В результате детектирования получаются видеоимпульсы с амплитудами Z0i. На втором этапе вводятся весовые коэффициенты Si= . В зависимости от предполагаемых оценок величины tц составляются весовые суммы и устанавливается такое , для которого сумма максимальна.
По способу образования весовых сумм последетекторная обработка может быть корреляционной или фильтровой. При корреляционной обработке приемник стробируется по дальности (рис. 3.13) для выделения сигналов от интересующей цели и исключения шумов между радиоимпульсами. Снимаемая с выхода детектора стробированная пачка видеоимпульсов с амплитудами Z0i подается на параллельные каналы, рассчитанные на различные значения tц. В каждом канале значения Z0i
(i = 1,2, ..., М) умножаются на соответствующие коэффициенты Si = Fp[WA(ti—tц)] и результаты суммируются. В качестве оценки времени запаздывания пачки tц принимается значение tц канала, для которого весовая сумма максимальна. Существенным недостатком корреляционной схемы является ее многоканальность.
Фильтровая схема в отличие от корреляционной позволяет вести одноканальную обработку пачек видеоимпульсов
Видеоимпульсы с выхода приемника запоминаются с последующим воспроизведением. Воспроизводимые сигналы усиливаются, а затем суммируются. Число усилителей должно соответствовать числу импульсов в пачке М. Значения коэффициента усиления к1,к2…км весовых усилителей выбираются в соответствии с результирующей диаграммой направленности антенны. Максимальная амплитуда выходного сигнала получается в момент времени , где t0- время запаздывания максимума огибающей пачки в схеме обработки. Рассмотренный метод обработки называют методом симметричных весовых коэффициентов.
Учитывая, что производная гладкой функции в точке максимума равна нулю, видоизменим условие (3.9) оптимума оценки
,
или
. (3.10)
Весовая сумма (3.10) реализуется рассмотренными схемами корреляционной или фильтровой обработки, если четную функцию веса заменить нечетной
(рис. 3.14, б). Оценка времени запаздывания пачки определяется при этом из условия минимума суммы (3.10). Рассмотренный метод обработки называется методом антисимметричных весовых коэффициентов.
При слабом сигнале квадратичный детектор теоретически более предпочтителен, чем линейный. Оптимальная функция веса при этом соответствует квадрату результирующей диаграммы направленности при методе симметричных или производной квадрата при методе антисимметричных весовых коэффициентов. Однако разница в эффективности обработки с квадратичным и линейным детектором, мала.
Большинство результатов распространяется на пачку импульсов с независимыми случайными амплитудами и начальными фазами.
Таким образом, во всех основных случаях оптимальной является обработка по методу симметричных или антисимметричных весовых коэффициентов.
Ввиду сложности долговременного запоминания многие практические методы определения положения центра пачки основаны на кратковременном запоминании с использованием основных идей весовой обработки.
В основе практических методов определения углового положения центра пачки лежит использование квазиоптимальных весовых функций и сокращение объема памяти при незначительном возрастании погрешностей измерения. Могут использоваться как симметричные, так и антисимметричные квазиоптимальные весовые функции (рис. 3.15). К числу основных методов определения центра пачки при этом относят методы интегрирования импульсов, сравнения площадей, счета импульсов, а также методы «вилки», максимума и минимума.
Методы интегрирования импульсов основаны на использовании симметричной прямоугольной весовой функции (рис. 3.15, а), которая близка к оптимальной при независимых флюктуациях амплитуд импульсов пачки и большом отношении сигнала к шуму. Оценка времени запаздывания t*ц в этом случае определяется из условия . С учетом
запаздывания в системе обработки она соответствует моменту максимума напряжения на выходе сумматора. При одинаковых длительностях весовой функции и пачки это напряжение пропорционально сумме всех ее импульсов. Если длительность весовой функции меньше длительности пачки, суммируется только часть импульсов.
Методы сравнения площадей основаны на применении антисимметричных весовых функций (рис. 3.15, е, ж). Использование весовой функции (рис. 3.15, е) заключается в следующем. Видеоимпульсы от выбранной цели подаются на схему сравнения площадей, содержащую в данном случае только два весовых усилителя, один из которых является инвертором. Площадь видеоимпульсов (рис. 3.16, а) в момент оптимального отсчета разбивается на две равновеликие части.
Отсчет угловой координаты цели производится в момент времени, когда напряжение на выходе сумматора равно нулю с учетом запаздывания в схеме обработки. Обработка пачки импульсов при весовой функции, изображенной на
рис. 3.15, ж, отличается от рассмотренной тем, что площади части импульсов не суммируются (рис. 3.16,. б).
При сравнении площадей возможно образование зоны нечувствительности. Поэтому от разбиения площади видеоимпульсов переходят к разбиению площади под огибающей пачки (рис. 3.16, в). Для этого видеоимпульсы выбранной цели сначала подают на схему выделения огибающей и только после этого на схему сравнения площадей, например, временной дискриминатор.
Определение угловой координаты по центру отметки на экране индикатора также может быть отнесено к сравнению площадей. Накопление яркостей в отдельных точках экрана соответствует при этом первой ступени интегрирования. Основное интегрирование — по промежуткам времени, составляющим половину длительности пачки, производится оператором визуально — при определении центра дужки.
Методы счета импульсов, превышающих порог, также сводятся к интегрированию импульсов, но аналоговое суммирование заменяется цифровым. Для измерения положения оси антенны не обязательно запоминать момент прихода каждого импульса пачки. Могут запоминаться только моменты ее начала и конца.
Запоминающее устройство при этом существенно упрощается. Счет числа импульсов, превышающих порог, ведется на временном интервале, составляющем часть общей длительности пачки. Угловая координата цели определяется как среднее арифметическое значений координат оси антенны, соответствующих началу и концу пачки. Для ослабления влияния ложных импульсов и пропусков сигнала на точность измерения начало и конец пачки определяются по специальному критерию (логике). В качестве критерия может быть выбран, в частности, следующий. Если за три последовательных периода повторения обнаружен один импульс, он считается ложным (рис. 3.17), если два — они считаются началом пачки.
Конец пачки отмечается, если в трех последовательных периодах после начала когда впервые обнаружен пропуск двух импульсов (пропуск только одного импульса считается ложным).
В общем случае может использоваться логика «п из m». Логики могут быть целыми (п = т) и дробными (п <m). Для определения начала и конца пачки могут использоваться одинаковые логики, либо различные. При использовании различных логик менее жесткая определяет конец пачки, чтобы исключить ее дробление вследствие флюктуационного выпадения отдельных импульсов. Пусть для определения начала пачки используется логика «3 из 3» (3/3). Тогда дробление пачки менее вероятно, когда ее конец определяется логикой «2 из 3» (2/3) или какой-либо другой менее жесткой логикой. Ею может быть логика «3 из 3» с дополнительным условием, чтобы в конце пачки следовало два нуля подряд (логика 3/3-00).
Методы вилки, максимума и минимума являются исторически одними из первых методов измерения угловых координат. Метод вилки состоит в oопределении координаты по двум засечкам q1 и q2, соответствующим одинаковым значениям амплитуды сигнала при отвороте антенны в ту и другую сторону от направления на цель. Искомая координата находится как среднее арифметическое q*=(q1+q2)/2. Метод вилки эквивалентен использованию антисимметричной весовой функции ( рис.3.15, д).
При методах максимума и минимума используется, по существу, весовая функция, изображенная на рис. 3.15, г (метод максимума) или противоположная ей по знаку (метод минимума). Диаграмма направленности антенны радиолокатора при методе минимума выбирается с резко выраженным провалом (рис. 3.18).
Оценка угловой координаты цели производится по положению антенны, соответствующему максимуму или минимуму сигнала. В первых радиолокаторах, поворачивая антенную систему, оператор следил за изменением амплитуды сигнала по экрану индикатора. Когда амплитуда оказывалась максимальной или минимальной, производился отсчет по шкале, связанной с поворотным механизмом антенны. Недостатком метода максимума является его малая точность вследствие слабого изменения амплитуды сигнала в окрестности максимума. При остром провале в диаграмме направленности метод минимума обеспечивает более высокую точность, чем метод максимума, однако его возможности снижаются из-за низкого уровня сигнала в рабочей точке. Поэтому область использования методов максимума и минимума сужается.
- Радиолокационные системы
- Радиолокационные системы
- Введение
- 1. Общая характеристика радиосистем.
- 1.1. Основные системные принципы
- Виды радиосистем
- 1.2 Начало радиолокации
- 1.3 Радиолокация как средство наблюдения
- Диапазоны волн, используемые в радиолокации
- Радиолокационное наблюдение как средство решения навигационных задач
- Оптическая локация. Активная оптическая локация
- Акустическая локация. Общие сведения.
- Особенности гидроакустических колебаний
- Гидролокация. Пассивная гидролокация – шумопеленгование
- Активная гидролокация.
- 2.Физические основы определения местоположения воздушных судов.
- 2.1. Особенности распространения радиоволн
- Дальность действия радиолинии с активным ответом
- 2.2.Дальность действия связи
- 2.3 Дальность действия активной рлс
- 3. Методы определения местоположения воздушных объектов.
- 3.1. Методы дальнометрии
- Частотный метод
- Частотная радиолокация многих целей
- Импульсный метод
- 3.2. Методы измерения угловых координат.
- 3.2.1 Одноканальное измерение угловой координаты
- 3.2.2. Методы радиопеленгации
- 3.2.3. Моноимпульсные методы измерения угловых координат
- Обзорные фазовые пеленгаторы
- 3.3. Методы измерения высоты полета
- Метод максимума
- Метод наклонного луча
- Метод парциальных диаграмм.
- Частотное сканирование луча
- 3.4. Радиотехнические методы определения местоположения объектов
- 4. Радиолокационные системы
- Задачи решаемые в радиолокационных системах
- 4.1.Обнаружение
- 4.1.1.Параметрические обнаружители. Обнаружение детерминированного сигнала на фоне белого шума
- Обнаружение сигнала со случайной начальной фазой
- Обнаружение сигнала со случайными амплитудой и начальной фазой.
- Оптимальное обнаружение когерентной пачки радиоимпульсов
- Оптимальное обнаружение некогерентной пачки радиоимпульсов
- 4.1.2.Непараметрические обнаружители
- Знаковые непараметрические обнаружители
- Ранговые непараметрические обнаружители. Одноканальные ранговые обнаружители
- Многоканальный ранговый обнаружитель
- Стабилизация уровня ложных тревог
- 4.1.4.Принципы автоматического обнаружения воздушных объектов
- 4.2. Измерение координат и параметров движения
- 4.2.1.Измерение дальности
- 4.2.2.Измерение азимута
- Разрешение сигналов
- Разрешающая способность по дальности
- Разрешающая способность по азимуту
- Разрешающая способность по углу места
- Разрешающая способность по высоте
- Разрешающий объем рлс
- Распознавание воздушных объектов
- Распознавание по широкополосным сигналам
- Распознавание по многочастотным сигналам
- Распознавание по узкополосным сигналам
- 4.5. Помехозащищенность.
- 4.5.1. Защита от пассивных помех, отражений от «местных предметов» и метеообразований.
- 4.5.1.1. Физические основы, лежащие в основе компенсации сигналов, отраженных от пассивных помех и «местных предметов»
- 4.5.1.2.Статистические характеристики пассивных помех
- 4.5.1.3. Когерентность сигналов
- Радиолокаторы с эквивалентной внутренней когерентностью
- Радиолокаторы с внешней когерентностью
- Радиолокаторы с истинной внутренней когерентностью
- 4.5.1.4.Селекция сигналов движущихся целей
- Гребенчатые фильтры накопления
- Гребенчатые фильтры подавления
- Принцип когерентной оптимальной обработки на видеочастоте
- 4.5.1.5.Особенности систем сдц
- Подавитель на промежуточной частоте
- Череспериодное вычитание
- 4.5.1.6. Формирование карты местных предметов
- 4.5.1.7 Применение систем сдц для компенсации сигналов дискретных пассивных помех
- 4.5.1.8. Компенсация сигналов дискретных пассивных помех при корреляционном анализе
- 4.5.1.9. Цифровая система селекции движущихся целей
- 4.5.1.10. Дискретно-аналоговые системы сдц
- Устранение слепых скоростей в компенсаторе на ппз
- 4.5.1.11. Многоканальная доплеровская фильтрация
- 4.5.1.12. Некоторые методы скоростной селекции
- 4.5.1.13 Основные характеристики систем сдц Коэффициент подавления пассивной помехи
- Коэффициент подпомеховой видимости (коэффициент улучшения)
- 4.5.2. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- 4.5.2.1 Нормирование уровня длинных импульсных помех с помощью схемы шоу
- 4.5.2.2. Нормирование уровня длинных импульсных помех с помощью схемы рос
- 4.5.2.3. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- 4.5.2.4. Нормирование уровня импульсных помех при обработке сложных сигналов
- 4.5.2.5.Обработка сигналов в условиях воздействия несинхронных импульсных помех
- 4.5.3.Активные маскирующие помехи и принципы защиты от них
- 4.6. Виды радиосигналов принимаемых в рлс
- 4.6.1. Характеристики сигналов рлс
- 4.6.2.Функция неопределенности прямоугольного радиоимпульса
- 4.6.3. Широкополосные сигналы
- 4.6.4. Функция неопределенности фазокодоманипулированного сигнала
- 4.6.5.Функция неопределенности сигнала с линейной частотой модуляции
- 4.6.6.Обработка фкм – сигнала
- 4.6.7.Пачка когерентных радиоимпульсов
- 4.6.8. Пачка радиоимпульсов со случайными начальными фазами
- 4.7. Активные системы радиолокации
- 4.7.1. Активные системы с пассивным ответом (первичные рлс)
- 4.7.2. Структура первичной рлс
- Первичные средства радиолокации
- 4.7.3. Активные системы с активным ответом (вторичные рлс)
- Структура и принцип работы систем вторичной радиолокации
- Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- Кодирование запросных и ответных сигналов. Методы кодирования запросных и ответных сигналов
- Структура запросных сигналов
- Структура ответных сигналов. Ответный сигнал режима увд
- Ответный сигнал режима rbs
- 4.7.4. Дискретно–адресная система вторичной радиолокации
- 4.7.5. Система радиолокационного опознавания
- Классификация систем радиолокационного опознавания
- Методы кодирования и декодирования сигналов
- Защита от влияния боковых лепестков диаграммы направленности антенны. Принцип защиты ответчиков от запросных сигналов, излучаемых запросчиками в боковых направлениях
- 5. Пассивная радиолокация
- 6. Радиолокационные системы с синтезированной апертурой
- 7. Предупреждение столкновений воздушных судов
- 8.Автоматическое зависимое наблюдение
- 9.Загоризонтная радиолокация.
- 9.1.Историческая справка
- 9.2.Особенности загоризонтных радиолокаторов
- 9.3.Уравнение радиолокации
- 9.4.Потенциал радиолокационной станции
- 9.5.Методы защиты рлс от радиопомех
- Адаптация к помеховым условиям путем выбора канала с минимальным уровнем активных помех
- Адаптивная пространственная фильтрация активных помех
- 9.6.Принципы построения загоризонтных рлс
- 10. Пространственно-временная обработка
- Пространственно-временная обработка
- Объединение во времени результатов первичной обработки
- Статистическая модель движения объекта.
- Алгоритм вторичной обработки радиолокационной информации
- Пространственно-некогерентное объединение обнаруженных отметок и единичных замеров при централизованной обработке.
- Пространственно-временная обработка в бортовых рлс
- 11. Особенности эксплуатации радиолокационной системы
- 11.1. Исторические аспекты теории надежности.
- 11.2.Система качества
- 11.3. Эксплуатация и ремонт технических систем
- Надежность технических систем при эксплуатации.
- Эксплуатационные методы обеспечения надежности.
- Система технического обслуживания и ремонта.
- Методика обнаружения неисправностей
- Метод последовательных приближений
- Способ контрольных переключений и регулировок
- Способ промежуточных измерений
- Способ замены
- Способ внешнего осмотра
- Порядок испытаний при обнаружении неисправностей, возникающих после включения системы.
- Литература
- Список сокращений