Пространственно-временная обработка в бортовых рлс
Одной из задач, возлагаемой на бортовые РЛС (БРЛС), является обнаруже6ние и сопровождение маловысотных целей на фоне отражений от земной поверхности. При движении БРЛС перемежается относительно Земли с некоторой скоростью, что приводит к расширению спектра помехи:
, (10.18)
где - тангенциальная составляющая скорости;
- горизонтальный размер раскрыва антенны;
- угол между нормалью антенны и направлением на лоцируемый участок поверхности.
С каждого азимутального направления осуществляется прием помеховых колебаний, имеющих различные значения доплеровских частот. Для эффективного их подавления необходимо осуществлять резекцию помех с каждого направления, что может быть достигнуто построением адаптивных пространственно-временных фильтров.
При решении задач оптимального приема необходимо вычислять отношение правдоподобия (или его логарифма) и сравнивать его с порогом. Для построения схем обработки требуется знать весовой вектор, используемый в пространственно-временном фильтре. Общее число дискрет при (2М+1) канальном приеме составляет m = (2М+1)L. Это будет соответствовать размерности весового вектора D.
Отношение сигнал/(помеха + шум) на выходе пространственно-временного фильтра (ПВФ) равно:
(10.19)
где - ковариационная матрица полезных сигналов;
- ковариационная матрица (помеха + шум).
Максимум отношения зависит от значений весового вектора D, оптимальное значение которого может быть определено с помощью поискового или градиентного алгоритмов в самонастраивающихся ПВФ. Однако такие устройства очень сложны.
Может быть выбран более простой критерий минимума средней мощности остатков помехи на выходе ПВФ. Вариант адаптивного ПВФ, обеспечивающего компенсацию помех изображен на рис.10.22.
Рис.10.22. Адаптивный пространственно-временной фильтр
с выделенным основным каналом
В этом случае значения весового вектора D вычисляются с помощью корреляционных обратных связей без определения прямых и обратных ковариационных матриц помехи и шума, тем самым обеспечивается самонастройка фильтра на реплексию помехи.
Пространственно-временную обработку можно трактовать как процесс управления весовой функцией раскрыва антенны в режиме передачи или приема для каждого периода посылок. Выбором распределения поля на раскрыве можно изменять ковариационную матрицу помехи таким образом, чтобы обеспечить наилучшую компенсацию пассивных помех.
Различают системы пространственно-временной обработки сигналов с управлением амплитудно-фазовым распределением в раскрыве антенны при излучении и при приеме. В первом случае процесс называется пространственно-временной модуляцией излучаемых колебаний, во втором случае – пространственно-временной фильтрацией принимаемых сигналов.
При реализации пространственно-временной модуляции излучаемых колебаний передатчик можно подключать не ко всем элементам передающей антенны одновременно, а к группе элементов, образуя «излучающее окно» размером (рис.10. 23).
Рис.10.23 Пояснение принципа пространственно-временной модуляции
излучаемых сигналов
За счет коммутации элементов «излучающее окно» смещается в направлении, противоположном движению воздушного судна, чем достигается искусственная остановка движения антенны в пространстве. Для компенсации расширения спектра помеховых сигналов скорость перемещение окна в плоскости раскрыва антенны должна быть равна удвоенной тангенциальной составляющей скорости носителя БРЛС и противоположна по направлению
. (10.20)
Пространственно-временная фильтрация осуществляется путем программного изменения весовой функции антенного раскрыва, чем добиваются эффекта его «остановки». На интервале «остановки» можно сформировать ряд пространственных каналов. На рис.10. 24 изображен пример для трех каналов: канал с фазовым центром, смещенным вдоль раскрыва в направлении тангенциальной составляющей вектора скорости носителя «-1»; канал с фазовым центром в середине раскрыва «0» и канал с фазовым центром, смещенным в противоположную сторону от направления тангенциальной составляющей вектора скорости «+1».
Рис.10.24. Пояснение принципа пространственно-временной фильтрации
принимаемых сигналов
Программное управление положением фазового центра осуществляется только на прием.
- Радиолокационные системы
- Радиолокационные системы
- Введение
- 1. Общая характеристика радиосистем.
- 1.1. Основные системные принципы
- Виды радиосистем
- 1.2 Начало радиолокации
- 1.3 Радиолокация как средство наблюдения
- Диапазоны волн, используемые в радиолокации
- Радиолокационное наблюдение как средство решения навигационных задач
- Оптическая локация. Активная оптическая локация
- Акустическая локация. Общие сведения.
- Особенности гидроакустических колебаний
- Гидролокация. Пассивная гидролокация – шумопеленгование
- Активная гидролокация.
- 2.Физические основы определения местоположения воздушных судов.
- 2.1. Особенности распространения радиоволн
- Дальность действия радиолинии с активным ответом
- 2.2.Дальность действия связи
- 2.3 Дальность действия активной рлс
- 3. Методы определения местоположения воздушных объектов.
- 3.1. Методы дальнометрии
- Частотный метод
- Частотная радиолокация многих целей
- Импульсный метод
- 3.2. Методы измерения угловых координат.
- 3.2.1 Одноканальное измерение угловой координаты
- 3.2.2. Методы радиопеленгации
- 3.2.3. Моноимпульсные методы измерения угловых координат
- Обзорные фазовые пеленгаторы
- 3.3. Методы измерения высоты полета
- Метод максимума
- Метод наклонного луча
- Метод парциальных диаграмм.
- Частотное сканирование луча
- 3.4. Радиотехнические методы определения местоположения объектов
- 4. Радиолокационные системы
- Задачи решаемые в радиолокационных системах
- 4.1.Обнаружение
- 4.1.1.Параметрические обнаружители. Обнаружение детерминированного сигнала на фоне белого шума
- Обнаружение сигнала со случайной начальной фазой
- Обнаружение сигнала со случайными амплитудой и начальной фазой.
- Оптимальное обнаружение когерентной пачки радиоимпульсов
- Оптимальное обнаружение некогерентной пачки радиоимпульсов
- 4.1.2.Непараметрические обнаружители
- Знаковые непараметрические обнаружители
- Ранговые непараметрические обнаружители. Одноканальные ранговые обнаружители
- Многоканальный ранговый обнаружитель
- Стабилизация уровня ложных тревог
- 4.1.4.Принципы автоматического обнаружения воздушных объектов
- 4.2. Измерение координат и параметров движения
- 4.2.1.Измерение дальности
- 4.2.2.Измерение азимута
- Разрешение сигналов
- Разрешающая способность по дальности
- Разрешающая способность по азимуту
- Разрешающая способность по углу места
- Разрешающая способность по высоте
- Разрешающий объем рлс
- Распознавание воздушных объектов
- Распознавание по широкополосным сигналам
- Распознавание по многочастотным сигналам
- Распознавание по узкополосным сигналам
- 4.5. Помехозащищенность.
- 4.5.1. Защита от пассивных помех, отражений от «местных предметов» и метеообразований.
- 4.5.1.1. Физические основы, лежащие в основе компенсации сигналов, отраженных от пассивных помех и «местных предметов»
- 4.5.1.2.Статистические характеристики пассивных помех
- 4.5.1.3. Когерентность сигналов
- Радиолокаторы с эквивалентной внутренней когерентностью
- Радиолокаторы с внешней когерентностью
- Радиолокаторы с истинной внутренней когерентностью
- 4.5.1.4.Селекция сигналов движущихся целей
- Гребенчатые фильтры накопления
- Гребенчатые фильтры подавления
- Принцип когерентной оптимальной обработки на видеочастоте
- 4.5.1.5.Особенности систем сдц
- Подавитель на промежуточной частоте
- Череспериодное вычитание
- 4.5.1.6. Формирование карты местных предметов
- 4.5.1.7 Применение систем сдц для компенсации сигналов дискретных пассивных помех
- 4.5.1.8. Компенсация сигналов дискретных пассивных помех при корреляционном анализе
- 4.5.1.9. Цифровая система селекции движущихся целей
- 4.5.1.10. Дискретно-аналоговые системы сдц
- Устранение слепых скоростей в компенсаторе на ппз
- 4.5.1.11. Многоканальная доплеровская фильтрация
- 4.5.1.12. Некоторые методы скоростной селекции
- 4.5.1.13 Основные характеристики систем сдц Коэффициент подавления пассивной помехи
- Коэффициент подпомеховой видимости (коэффициент улучшения)
- 4.5.2. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- 4.5.2.1 Нормирование уровня длинных импульсных помех с помощью схемы шоу
- 4.5.2.2. Нормирование уровня длинных импульсных помех с помощью схемы рос
- 4.5.2.3. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- 4.5.2.4. Нормирование уровня импульсных помех при обработке сложных сигналов
- 4.5.2.5.Обработка сигналов в условиях воздействия несинхронных импульсных помех
- 4.5.3.Активные маскирующие помехи и принципы защиты от них
- 4.6. Виды радиосигналов принимаемых в рлс
- 4.6.1. Характеристики сигналов рлс
- 4.6.2.Функция неопределенности прямоугольного радиоимпульса
- 4.6.3. Широкополосные сигналы
- 4.6.4. Функция неопределенности фазокодоманипулированного сигнала
- 4.6.5.Функция неопределенности сигнала с линейной частотой модуляции
- 4.6.6.Обработка фкм – сигнала
- 4.6.7.Пачка когерентных радиоимпульсов
- 4.6.8. Пачка радиоимпульсов со случайными начальными фазами
- 4.7. Активные системы радиолокации
- 4.7.1. Активные системы с пассивным ответом (первичные рлс)
- 4.7.2. Структура первичной рлс
- Первичные средства радиолокации
- 4.7.3. Активные системы с активным ответом (вторичные рлс)
- Структура и принцип работы систем вторичной радиолокации
- Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- Кодирование запросных и ответных сигналов. Методы кодирования запросных и ответных сигналов
- Структура запросных сигналов
- Структура ответных сигналов. Ответный сигнал режима увд
- Ответный сигнал режима rbs
- 4.7.4. Дискретно–адресная система вторичной радиолокации
- 4.7.5. Система радиолокационного опознавания
- Классификация систем радиолокационного опознавания
- Методы кодирования и декодирования сигналов
- Защита от влияния боковых лепестков диаграммы направленности антенны. Принцип защиты ответчиков от запросных сигналов, излучаемых запросчиками в боковых направлениях
- 5. Пассивная радиолокация
- 6. Радиолокационные системы с синтезированной апертурой
- 7. Предупреждение столкновений воздушных судов
- 8.Автоматическое зависимое наблюдение
- 9.Загоризонтная радиолокация.
- 9.1.Историческая справка
- 9.2.Особенности загоризонтных радиолокаторов
- 9.3.Уравнение радиолокации
- 9.4.Потенциал радиолокационной станции
- 9.5.Методы защиты рлс от радиопомех
- Адаптация к помеховым условиям путем выбора канала с минимальным уровнем активных помех
- Адаптивная пространственная фильтрация активных помех
- 9.6.Принципы построения загоризонтных рлс
- 10. Пространственно-временная обработка
- Пространственно-временная обработка
- Объединение во времени результатов первичной обработки
- Статистическая модель движения объекта.
- Алгоритм вторичной обработки радиолокационной информации
- Пространственно-некогерентное объединение обнаруженных отметок и единичных замеров при централизованной обработке.
- Пространственно-временная обработка в бортовых рлс
- 11. Особенности эксплуатации радиолокационной системы
- 11.1. Исторические аспекты теории надежности.
- 11.2.Система качества
- 11.3. Эксплуатация и ремонт технических систем
- Надежность технических систем при эксплуатации.
- Эксплуатационные методы обеспечения надежности.
- Система технического обслуживания и ремонта.
- Методика обнаружения неисправностей
- Метод последовательных приближений
- Способ контрольных переключений и регулировок
- Способ промежуточных измерений
- Способ замены
- Способ внешнего осмотра
- Порядок испытаний при обнаружении неисправностей, возникающих после включения системы.
- Литература
- Список сокращений