2.6.1. Общие сведения и классификация методов обнаружения ошибок передачи данных
Задача обнаружения ошибок, возникающих в процессе передачи информационных кадров по каналам связи телекоммуникационных сетей, решается протоколами канального уровня [14].
Большинство методов обнаружения ошибок основаны на передаче в составе кадра избыточной информации, по которой можно судить с некоторой степенью вероятности о достоверности принятых данных. Такую информацию принято называть контрольной суммой. Контрольная сумма (КС) вычисляется как функция от основной информации, причем необязательно только путем суммирования. Принимающая сторона повторно вычисляет контрольную сумму кадра по известному алгоритму и в случае ее совпадения с контрольной суммой, вычисленной передающей стороной, делает вывод о том, что данные были переданы через сеть корректно.
Существует несколько распространенных методов обнаружения ошибок и соответствующих им алгоритмов вычисления контрольной суммы, отличающихся вычислительной сложностью и способностью обнаруживать искажения (рис. 2.23).
Рис. 2.23. Методы обнаружения ошибок
Контроль по паритету на четность (нечетность) является одним из наиболее простых методов контроля данных, обладает весьма слабыми возможностями по контролю. Позволяет обнаруживать только одиночные или нечетной кратности ошибки в проверяемых данных. Метод заключается в суммировании по модулю 2 всех бит контролируемой информации. Значение контрольного разряда r, добавляемого к информационному сообщению U = (u0 ,.., um), формируется в соответствии с (11.1) при контроле на четность или (11.2) ‑ при контроле на нечетность.
Сформированный контрольный разряд r пересылается вместе с контролируемой информацией. При искажении при пересылке любого одного бита исходных данных (или контрольного разряда) результат повторного суммирования будет отличаться от принятого контрольного разряда, что говорит об ошибке.
(2.8)
(2.9)
Пример 1.
| Чет. | Нечет. |
U = 100110111 | 1 | 0 |
U = 10011001 | 0 | 1 |
Контроль по паритету применяется к небольшим порциям данных, как правило, к каждому байту, что дает коэффициент избыточности для этого метода 1/8. Метод в настоящее время редко применяется в вычислительных сетях из-за его большой избыточности и невысоких диагностических возможностей.
Вертикальный и горизонтальный контроль по паритету представляет собой модификацию описанного выше метода. Его отличие состоит в том, что исходные данные рассматриваются в виде матрицы, строки которой составляют байты данных. Контрольный разряд подсчитывается отдельно для каждой строки и для каждого столбца матрицы (табл. 2.4). Этот метод обнаруживает большую часть двойных ошибок, однако обладает еще большей избыточностью. На практике почти не применяется.
Циклический избыточный контроль (Cyclyc Redundancy Check, CRC) является разновидностью использования блочных кодов. В настоящее время широко применяется для контроля передачи данных в компьютерных и телекоммуникационных сетях. Вертикальный и горизонтальный контроль по паритету приведены в табл. 2.4.
Таблица 2.4
Байты | 0 р. | 1 р. | 2 р. | 3 р. | 4 р. | 5 р. | 6 р. | 7 р. | Нечет. |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
5 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
6 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Нечет. | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
|
Метод основан на представлении информационных кадров в виде единой совокупности двух блоков: информационной и проверочной последовательности двоичных символов (рис. 2.24). Наличие специальной проверочной последовательности позволяет не только выявлять факт искажения отдельных информационных разрядов, но и корректировать их.
Информационная последовательность | Проверочная последовательность |
Рис. 2.24. Структура информационного кадра при циклическом контроле
Например, в кадре стандарта Ethernet, содержащего 8192 бита (1024 байта) в качестве контрольной последовательности используется остаток от деления этого числа на известный делитель P(x), представляющий собой порождающий полином. Обычно в качестве такого делителя выбирается семнадцати -или тридцати трехразрядное число, чтобы остаток от деления имел длину 16 разрядов (2 байта) или 32 разряда (4 байта).
При получении кадра данных снова вычисляется остаток от деления на тот же делитель P(x), но при этом к данным кадра добавляется и содержащаяся в нем контрольная сумма. Если остаток от деления на P(x) равен нулю, то делается вывод об отсутствии ошибок в полученном кадре, в противном случае кадр считается искаженным.
Метод циклического контроля обладает более высокой вычислительной сложностью, но его диагностические возможности гораздо выше, чем у методов контроля по паритету. Метод CRC обнаруживает все одиночные ошибки, двойные ошибки и ошибки в нечетном числе бит. Метод обладает также невысокой степенью избыточности. Например, для кадра Ethernet размером в 1024 байта контрольная информация длиной в 4 байт составляет только 0,4 %.
Рассмотрим пример использования метода циклического контроля.
Введем следующие обозначения:
1. U(x)=um-1xm-1+ um-2xm-2+…+ u0x0 ‑ полином, определяющий информационную последовательность данных (m - разрядность данных);
2. P(x) =pkxk+ pk-1xk-1+…+ p0x0 ‑ порождающий полином (k – разрядность проверочной последовательности);
3. F(x) = fn-1xn-1+ fn-2xn-2 +...+ f0x0 ‑ полином, определяющий кодовую комбинацию, передаваемую по каналу связи (n = m + k) - разрядность кодовой комбинации);
4. Q(x) = qm-1xm-1+ qm-2 xm-2+ ... + q0 x0 ‑ частное от деления кодовой комбинации F(x) на порождающий полином P(x);
5. R(x) = rk-1 xk-1 + гk-2хk-2+…+ r0х0 ‑ остаток от деления кодовой комбинации F(x) на порождающий полином P(x), образующий проверочную последовательность символов;
Алгоритм кодирования передаваемых данных при циклическом контроле:
1. Для формирования блоков информационных и проверочных символов исходная информационная последовательность U(x) сдвигается на k разрядов влево. Освободившиеся младшие разряды заполняются нулями. В дальнейшем их место займут проверочные символы. Аналитически данная операция может быть представлена выражением xkU(x).
2. Сдвинутая последовательность информационных символов делится на порождающий полином Р(х).
3. Для формирования кодовой комбинации F(x), выдаваемой в канал связи, полученный в результате деления k - разрядный остаток R(x) добавляется к младшим разрядам сдвинутой последовательности информационных символов. Операция сложения выполняется по модулю 2: F(x) = xk U(x) R(x).
Пример 2.
Формирование кодовой комбинации. Дано:
1. U(x) = x4 + x2 + x + 1 = 10111 ‑ информационная последовательность (m=5).
2. P(x) = x4 + x + 1 = 10011 ‑ порождающий полином (k=4).
Решение:
1. Сдвиг информационной последовательности на k=4 разряда влево.
U(x) x4 = (x4 + x2 + x + 1) x4 = x8 + x6 + x5 + x4 = 101110000.
2. Формирование проверочной последовательности путем деления U(x) x4 на порождающий полином Р(х). Проверочные символы определяются остатком отделения.
3. Формирование кодовой комбинации F(x).
Обнаружение ошибок при циклическом кодировании сводится к делению принятой кодовой комбинации на тот же порождающий полином, который использовался для кодирования. Если ошибок в принятой комбинации нет, то деление на порождающий полином производится без остатка. Наличие остатка свидетельствует о присутствии ошибок.
При использовании в циклических кодах декодирования с исправлением ошибок остаток от деления может играть роль синдрома. Нулевой синдром указывает на то, что принятая комбинация является разрешенной. Всякому ненулевому синдрому соответствует определенная конфигурация ошибок, которая и исправляется.
Однако обычно в телекоммуникационных сетях исправление ошибок при использовании циклических кодов не производится, а при обнаружении ошибок выдается запрос на повтор испорченной ошибками комбинации. Такие системы называются системами с обратной связью.
- С одержание
- 1. Принципы построения и
- 2. Основы передачи данных в
- 4. Высокоскоростные технологии
- 6. Технологии построения
- 7. Глобальная информационная
- Введение
- 1. Принципы построения и функционирования сетей эвм
- 1.1. Общие сведения о системах телеобработки данных и телекоммуникационных сетях
- 1.1.1. Предмет изучения, цель, задачи и структура дисциплины
- 1.1.2. Общие сведения о системах телеобработки данных
- 1.1.3. Общие сведения о телекоммуникационных сетях
- 1.2. Функциональный состав, структура и классификация сетей эвм
- 1.2.1. Функциональный состав и структура сетей эвм
- 1.2.2. Классификация сетей эвм
- 1.3. Методы структуризации сетей эвм
- 1.3.1. Физическая структуризация сетей эвм
- 1.3.2. Логическая структуризация сетей эвм
- 1.4. Архитектура и принципы построения сетей эвм
- 1.4.1. Эталонная модель взаимодействия открытых систем (модель osi). Иерархия протоколов
- 1.4.2. Сетезависимые и сетенезависимые уровни модели взаимодействия открытых систем
- 1.4.3. Стандартные стеки коммуникационных протоколов
- 1.5. Концепции управления сетевыми ресурсами
- 1.5.1. Критерии выбора типа сети эвм
- 1.5.2. Сетевые службы
- Контрольные вопросы
- 2. Основы передачи данных в телекоммуникационных сетях
- 2.1. Каналы связи телекоммуникационных сетей, их основные характеристики и классификация
- 2.1.1. Линии и каналы связи. Основные характеристики каналов связи
- 2.1.2. Классификация каналов связи телекоммуникационных сетей
- 2.2. Основные типы и характеристики линий связи
- 2.2.1. Проводные и кабельные линии связи
- 2.2.2. Беспроводные линии связи
- 2.3. Методы кодирования и передачи данных на физическом уровне
- 2.3.1. Методы аналоговой модуляции
- 2.3.2. Методы цифрового кодирования
- 2.3.3. Методы логического кодирования
- 2.4. Модемы
- 2.4.1. Устройство модемов
- 2.4.2. Классификация модемов
- 2.4.3. Модемные протоколы и стандарты передачи данных
- 2.5. Методы и протоколы передачи данных канального уровня
- 2.5.1. Назначение и классификация методов и протоколов передачи данных канального уровня
- 2.5.2. Асинхронные методы и протоколы передачи данных канального уровня
- 2.5.3. Синхронные символьно-ориентированные и бит-ориентированные методы и протоколы передачи данных канального уровня
- 2.6. Методы обнаружения и коррекции ошибок передачи данных канального уровня
- 2.6.1. Общие сведения и классификация методов обнаружения ошибок передачи данных
- 2.6.2. Методы восстановления искаженных и потерянных кадров
- 2.7. Методы коммутации абонентских систем в телекоммуникационных сетях
- 2.7.1. Метод коммутации каналов
- 2.7.2. Метод коммутации пакетов
- 2.7.3. Метод коммутации сообщений
- Контрольные вопросы
- 3. Локальные сети эвм
- 3.1. Общие сведения о локальных сетях эвм
- 3.1.1. Особенности локальных сетей эвм и области их применения
- 3.1.2. Характеристики и классификация локальных сетей эвм
- 3.1.3.Архитектура и стандарты локальных сетей эвм
- 3.2. Технические средства и оборудование локальных сетей эвм
- 3.2.1. Оконечное оборудование
- 3.2.1. Коммуникационное оборудование
- 3.2.2. Структурированная кабельная система
- 3.3. Базовые технологии построения локальных сетей эвм
- 3.3.1. Сетевая технология Ethernet
- 3.3.2. Метод доступа csma/cd
- 3.3.2. Форматы кадров технологии Ethernet
- 3.3.3. Спецификации физической среды Ethernet
- 3.3.4. Стандарт 10Base-5
- 3.3.12. Сетевая технология Token Ring
- 3.3.13.Сетевая технология fddi
- Контрольные вопросы
- 4. Высокоскоростные технологии локальных сетей эвм
- 4.1. Технология Fast Ethernet 100Мбит/с
- 4.1.1. Технология Gigabit Ethernet 1000 Мбит/с
- 4.1.2. Технология 100vg-AnyLan
- 4.2. Беспроводные локальные сети эвм
- 4.2.1. Общие сведения о беспроводных локальных сетях эвм
- 4.2.2. Беспроводные локальные сети на основе стандарта Hiperlan
- 4.2.3. Беспроводные локальные сети на основе стандарта ieee 802.11
- 4.3. Логическая структуризация локальных сетей эвм
- 4.3.1. Достоинства и недостатки разделяемой среды передачи данных локальных сетей эвм
- 4.3.2. Логическая структуризация локальных сетей с применением мостов и коммутаторов
- 4.3.3. Виртуальные локальные сети эвм
- 4.4. Объединение сетей эвм на основе сетевого уровня
- 4.4.1. Архитектура составной сети, принципы организации межсетевого взаимодействия
- 4.4.2. Протоколы маршрутизации составных сетей
- 4.4.3. Области применения и основные характеристики маршрутизаторов
- Контрольные вопросы
- 5. Глобальные сети эвм
- 5.1. Общие сведения о глобальных сетях эвм
- 5.1.1. Обобщенная структура и функции глобальных сетей эвм
- 5.1.2. Интерфейсы «пользователь - сеть» глобальных сетей эвм
- 5.2. Типы глобальных сетей эвм
- 5.2.1. Глобальные сети с выделенными каналами
- 5.2.2. Глобальные сети с коммутацией каналов
- 5.2.3 Глобальные сети с коммутацией пакетов
- Контрольные вопросы
- 6. Технологии построения глобальных информационных сетей
- 6.1. Цифровые сети с интеграцией услуг (сети isdn)
- 6.1.1. Основные принципы построения и компоненты сетей isdn
- 6.1.2. Типы сервиса сетей isdn
- 6.1.3. Пользовательские интерфейсы сетей isdn
- 6.2. Сети и технология х.25
- 6.2.1. Принципы построения и компоненты сети X.25
- 6.2.2. Уровни информационного взаимодействия в сети х.25
- 6.3. Сети и технология Frame Relay
- 6.3.1. Принципы построения и компоненты сетей Frame Relay
- 6.3.2. Структура кадра Frame Relay
- 6.3.3. Параметры качества обслуживания Frame Relay
- 6.4. Сети и технология atm
- 6.4.1. Принципы построения и компоненты сетей атм
- 6.4.2. Формат атм- ячеек
- 6.4.3. Типы и классы сервиса в атм-сетях
- 6.4.4. Параметры качества обслуживания в атм-сетях
- Контрольные вопросы
- 7. Глобальная информационная сеть интернет
- 7.1. Общие сведения о глобальной информационной сети Интернет
- 7.2. Протоколы информационного взаимодействия абонентских систем в сети Интернет
- 7.3. Система адресации абонентских систем в сети Интернет
- 7.4. Подключение к глобальной сети Интернет
- 7.4.1. Виды сеансового подключения
- 7.4.2. Виды постоянного подключения
- 7.5. Сервисные возможности глобальной сети Интернет
- 7.6. Основные технологии работы в World Wide Web
- 7.6.1. Протокол обмена гипертекстовой информацией http
- Контрольные вопросы
- 7. Система адресации абонентских систем в сети Интернет?
- Заключение
- Библиографичекий список