logo
Диплом оригінал

1.1.2 Силові ланцюги в режимах тяги і гальмування

Структура силових електричних ланцюгів вагонів моделей 81-717.5 і 81-714.5 відповідає реостатно-контакторному принципу управління тяговими двигунами з частковим використовуванням тиристорно-імпульсного управління в гальмівному режимі.

Струм в ланцюзі якорів тягових двигунів для підтримки його на заданому рівні регулюють в режимі тяги шляхом східчастого зменшення опору пускового резистора в поєднанні з перемиканням тягових двигунів з послідовного на послідовно-паралельне, а також шляхом східчастої зміни опору резисторів, що шунтують обмотки збудження тягових двигунів; в гальмівному режимі – шляхом плавного регулювання опору резистора, що шунтує обмотки збудження тягових двигунів, і східчастого зменшення опору гальмівного резистора.

Східчасте регулювання опору пуско-гальмівних резисторів здійснюється реостатним контроллером (ЕКГ-39У2), контакторні елементи якого включені паралельно секціям пуско-гальмівних резисторів.

Для скорочення втрат в пускових резисторах в електроприводі вагону використовуються тягові двигуни з низколежачими швидкісними характеристиками і в процесі розгону вагону здійснюється перемикання їх з'єднання з послідовного на послідовно-паралельне.

В результаті втрати електроенергії в пускових резисторах при русі вагону на розрахунковому перегоні 1700 м горизонтального профілю з середньою швидкістю 48 км/ч (час стоянки 25 с, напруга в контактній мережі 750 В) обмежені на рівні 3,5 % електроенергії, що витрачається на тягу.

Перегруповування тягових двигунів з послідовного на послідовно-паралельне з'єднання здійснюється по схемі моста, принцип роботи якої полягає в наступному.

Як приклад розглянемо спрощену силову схему ланцюгів тягових двигунів (рисунок 1.1). У момент пуску тягових двигунів їх обмотки Я1-Я4 і ОВ1-ОВ4 і пускові резистори R1 і R2 з'єднуються послідовно і підключаються до контактної мережі напругою U через контакторні елементи 1, ПС і 2 (інші контакторні елементи розімкнені) [1].

Рисунок 1.1 – Спрощена силова схема ланцюгів тягових двигунів

Сумарний опір резисторів R1 і R2 вибирається виходячи із забезпечення плавності пуску вагону. У міру розгону тягових двигунів по черзі замикаються контакторні елементи 3 − 8, шунтуючи ступені резисторів R1 і R2, кількість яких визначається допустимими значеннями коливань пускового струму і сили тяги при замиканні ступенів резисторів. У момент включення контакторного елемента 8послідовно з’єднані тягові двигуни через контакторні елементи 7, ПС і 8 (інші контакторні елементи розімкнені) безпосередньо підключаються до контактної мережі, причому подальша підтримка середніх значень струму і сили тяги при збільшенні частоти обертання тягових двигунів стає неможливою.

Для збереження динаміки вагону тягові двигуни перемикають на послідовно-паралельне з'єднання з включенням в паралельний ланцюг відповідного пускового резистора R1 і R2. В процесі перегруповування двигунів спочатку одночасно замикають контакторні елементи П1 і П2 і групи двигунів (перша група: Я1-ЯЗ- ОВ1-ОВЗ, друга група: ОВ2-ОВ4-Я2-Я4) з'єднуються з пусковими резисторами за схемою моста. Резистор R1 підключений до першої групи тягових двигунів через контакторні елементи П2, ПС і 7, а резистор R2 – до другої через контакторні елементи П1, ПС і 8, причому середні точки з'єднання груп тягових двигунів і послідовно включених по відношенню до контактної мережі резисторів R1 і R2 з'єднані. Між цими точками протікає різниця струмів послідовних ланцюгів резисторів і груп двигунів, причому після підключення резисторів струм в тягових двигунах, а отже, і тягові зусилля зберігаються практично на колишньому рівні.

Далі розмикають контакторний елемент ПС, включений між вказаними середніми точками резисторів і груп двигунів, після чого утворюються два незалежні паралельні ланцюги, кожна з яких підключена до контактної мережі і складається з двох з’єднаних послідовно тягових двигунів і пускового резистора (Я1-ЯЗ-ОВ1-OB3-7-R2-П1 і П2-Rl-8-ОВ2-ОВ4-Я2-Я4), причому перехід на послідовно-паралельне з'єднання двигунів проходить практично без зниження сили тяги.

У вказаних паралельних ланцюгах струм на заданому рівні підтримується шляхом послідовного включення контакторних елементів 6 − 1. Таким чином, одні і ті ж контакторні елементи використовуються при регулюванні опорів пускових резисторів при послідовному (вал реостатного контролера обертається в одному напрямку) і послідовно-паралельному (вал реостатного контролера обертається в протилежному напрямку) з'єднанні тягових двигунів, що дозволяє значно скоротити число позицій реостатного контролера при збереженні необхідного числа ступенів пускових резисторів.

Використовування реостатного контролера з обертанням валу в протилежних напрямах при різних групуваннях тягових двигунів приводить до необхідності застосування окремого приводу контакторних елементів П1, П2 і ПС. Після замикання контакторних елементів 2 і 1 (П1 і П2 замкнуті, ПС і 3 − 8 розімкнені) перша і друга групи тягових двигунів безпосередньо підключаються до контактної мережі.

При подальшому розгоні тягових двигунів підтримка струму в ланцюзі якорів тягових двигунів на заданому рівні і збереження споживаної потужності забезпечується у наслідок ослаблення збудження двигунів. Спрощена схема підключення тягових двигунів до контактної мережі при регулюванні ослаблення збудження представлена на рисунку 1.2.

Ослаблення збудження (регулювання струмів збудження) здійснюється східчастою зміною опору резистора при послідовному замиканні контакторних елементів 1 − 3. Число ступенів ослаблення збудження визначається допустимими значеннями коливань струму і сили тяги при замиканні вказаних елементів. Для забезпечення безаварійної роботи тягових двигунів в перехідних режимах, зв'язаних, наприклад, з короткочасними відривами струмоприймача вагону, в ланцюг шунтуючого резистора RШ включається індуктивний шунт. Активний опір і індуктивність шунта вибираються так, щоб розподіл струмів в ланцюгах обмоток збудження і резистора RШ в перехідному і сталому режимах трохи відрізнялися. Після замикання контакторного елемента 3 тягові двигуни

виходять на швидкісну характеристику максимально ослабленого збудження і у міру подальшого розгону струм в ланцюгах якорів тягових машин і динаміка вагону зменшуються.

Рисунок 1.2 – Спрощена схем підключення тягових двигунів до контактної мережі при регулюванні ослаблення збудження

Таким чином, в режимі тяги можна виділити три характерні періоди роботи електроустаткування вагону: регулювання напруги на обмотках якорів тягових машин (режим пуску), регулювання струмів збудження (режим ослаблення збудження) і режим роботи по швидкісній характеристиці максимально ослабленого збудження.

В режимі реостатного гальмування тягові двигуни з'єднуються по перехресній мостовій схемі, представленій в спрощеному вигляді на рисунку 1.3.

В діагональ моста, утвореного обмотками якорів і збудження, включений гальмівний резистор. По ньому протікає сумарний струм обмоток якорів обох груп тягових машин. Як видно з рисунка 1.3, струм IТ1 якорів тягових двигунів першої групи протікає по обмоткам збудження тягових двигунів другої групи, а по обмоткам збудження тягових двигунів першої групи – струм IТ2 обмоток якорів тягових двигунів другої групи.

Перехресне з'єднання обмоток забезпечує електричну стійкість роботи схеми в режимі гальмування. В процесі реостатного гальмування тягові двигуни працюють в генераторному режимі і виробляють електричну енергію за рахунок кінетичної енергії, запасеної в рухомому складі при його розгоні. Електрична енергія перетвориться в теплову енергію, яка виділяється в гальмівному резисторі Rт.

В зоні високих і середніх швидкостей руху підтримка заданого струму в ланцюгах якорів тягових двигунів при їх гальмуванні здійснюється тиристорним регулятором.

Рисунок 1.3 – Перехресна мостова схема гальмування тягових двигунгів