Общие сведения
Принцип работы электромагнитных исполнительных устройств основан на способности электромагнитного поля создавать в ферромагнетиках механические усилия притягивания или отталкивания.
В системах автоматики широко применяют в качестве исполнительных механизмов (ИМ) электромагнитные приводы, преобразующие энергию электрического тока в поступательное движение рабочего органа. Их еще называет соленоидными. В зависимости от типа, конструктивного исполнения и условий применения выходной координатой электромагнитных ИМ могут быть:
- для ИМ с прямолинейным перемещением рабочего органа - перемещение, скорость и усилие;
- для ИМ с вращательным движением рабочего органа - угол поворота, частота вращения или развиваемый вращающий момент.
За управляющее воздействие на электромагнитные ИМ принимается электрический сигнал управления на намагничивающей обмотке, создающей электромагнитное поле и действующее через него на рабочий орган.
Ходовые электромагниты могут быть постоянного и переменного (однофазные и трехфазные) тока. Их основные характеристики - ход якоря, зависимость между перемещением якоря и тяговым усилием, зависимость между положением якоря (его перемещением) и расходом электроэнергии и время срабатывания. Эти характеристики зависят от формы магнитопровода, (см. рисунок 4.1), состоящего из ярма 1 и якоря 2 расположения, намагничивающих обмоток 3 и рода питающего тока (переменный или постоянный).
1 - ярмо; 2 - якорь; 3 - катушка; 1 - ход якоря
Рисунок 4.1 – Конструкция электромагнитного исполнительного механизма
В зависимости от хода якоря 1 (его максимального перемещения) различают короткоходовые (до 5 мм) и длинноходовые электромагниты (более 5 мм).
При выборе электромагнита необходимо учитывать следующие параметры:
- выбираемая конструкция должна отвечать длине хода, тяговой силе и заданной тяговой характеристике. Для больших тяговых сил и малой длины хода якоря используют короткоходовые, а для небольших тяговых сил и значительных ходов якоря - длинноходовые электромагниты. Для больших перемещений якоря - электромагниты с замкнутым цилиндрическим магнитопроводом и постоянной тяговой силой;
для быстродействующих систем необходимо применять электромагниты с шихтованным магнитопроводом, а для замедленных систем с нешихтованным магнитопроводом и поворотным якорем с массивной медной гильзой;
число циклов срабатывания должно быть меньше допустимого для данного ИМ;
электромагниты переменного тока при одинаковых совершенных работах потребляют электроэнергии больше, чем электромагниты постоянного тока;
Выбор электромагнита осуществляют по напряжению, току и потребляемой мощности. Средняя допустимая температура нагрева 85...90°С.
Электромагнитные ИМ отличаются простотой управления, малым весом и небольшой стоимостью. Однако для создания значительных усилий необходимо увеличивать рабочий ток катушки, в результате такие ИМ становятся громоздкими и невыгодными.
Тяговое усилие электромагнита пропорционально квадрату тока, протекающего по его обмотке:
F=f(I2).
Поэтому электромагнит может работать как при питании постоянным током так и при питании переменным током. Электромагниты переменного тока имеют худшие параметры, чем постоянного тока, поскольку при одинаковых усилиях развивают меньшее тяговое усилие, обладают меньшей чувствительностью и меньшей стабильностью. Они конструктивно сложнее и дороже из-за необходимости иметь шихтованный магнитопровод. Получили распространение электромагнитные ИМ серии ЭВ с поступательным характером движения, предназначенные для управления различными клапанами, вентилями, задвижками и золотниками (см. таблицу 4.1).
Таблица 4.1 – Характеристики электромагнитных ИМ.
Тип ИМ | Тяговое усилие, Н | Потребляемая мощность, Вт | Ход штока, мм | Режим работы ПВ % |
ЭВ-1 | 0,4 | 20 | 6 | 100 |
ЭВ-2 | 0,4 | 30 | 18 | 100 |
ЭВ-3 | 10,0 | 600 | 30 | 50 |
- Введение
- Часть 1. Основы теории автоматического управления
- Глава 1. Принципы построения автоматизированных производств
- 1.1. Автоматизация производства
- 1.2. Основные термины и определения автоматизированных производств
- 1.3. Конструкторская документация - схемы систем автоматики
- Глава 2. Принципы построения сау и режимы ее работы
- 2.1. Фундаментальные принципы управления
- 2.2. Основные виды сау
- Глава 3. Режимы работы сау
- 3.1. Статические режимы работы сау
- 3.1.1. Статические характеристики
- 3.1.2. Статическое и астатическое регулирование
- 3.2. Динамический режим сау
- 3.2.1. Уравнение динамики сау
- 3.2.2. Передаточная функция
- 3.2.3. Элементарные динамические звенья
- 3.3. Структурные схемы в сау
- Глава 4. Временные характеристики сау
- 4.1. Понятие временных характеристик
- 4.2. Переходные характеристики элементарных звеньев
- 4.2.1. Безынерционное (пропорциональное, усилительное) звено
- 4.2.2. Интегрирующее (астатическое) звено
- 4.2.3. Инерционное звено первого порядка (апериодическое)
- 4.2.4. Инерционные звенья второго порядка
- 4.2.5. Дифференцирующее звено
- 4.2.6. Запаздывающее (чистого или транспортного запаздывания) звено
- Глава 5. Частотные характеристики сау
- 5.1. Понятие частотных характеристик
- 5.2. Частотные характеристики типовых звеньев
- 5.2.1. Безынерционное звено
- 5.2.2. Интегрирующее звено
- 5.2.3. Апериодическое звено
- 5.2.4. Правила построения чх элементарных звеньев
- 5.3. Частотные характеристики разомкнутых одноконтурных сау
- Глава 6. Законы регулирования и качество сар
- 6.1. Характеристики объекта управления
- 6.2. Законы регулирования
- 6.3. Понятие устойчивости системы
- 6.4. Основные условия устойчивости
- 6.5 Частотные критерии устойчивости сау
- 6.6 Качество регулирования сау
- 6.7 Синтез и коррекция сар
- Часть 2. Технические средства автоматики
- Глава 7. Элементная база устройств автоматики
- 7.1. Элементная база автоматики
- 7.2. Аналоговые схемы устройств автоматики
- Глава 8. Цифровые схемы автоматики
- 8.1. Комбинационная логика
- 8.2. Элементы комбинационных логических устройств
- 8.3. Цифровые автоматы
- Глава 9. Датчики параметров технологического процесса
- 9.1. Характеристики датчиков
- 9.2. Чувствительные элементы датчиков
- 9.2.1. Механические чувствительные элементы датчиков
- 9.2.2. Потенциометрические чувствительные элементы
- 9.2.3. Тензочувствительные элементы
- 9.2.4. Индуктивные чувствительные элементы
- 9.2.5. Индукционные чувствительные элементы
- 9.2.6. Емкостные чувствительные элементы
- 9.2.7. Пьезоэлектрические чувствительные элементы
- 9.2.7. Фотоэлектрические чувствительные элементы
- 9.2.8. Элементы, чувствительные к температуре
- Глава 10. Принципиальные схемы датчиков
- 10.1. Датчики температуры
- 10.2. Датчики перемещений
- 10.3. Термоанемометр постоянной температуры
- 10.4. Датчик давления с ёмкостным преобразователем
- 10.5. Датчик влажности газов
- 10.6. Датчики, использующие фотоэлектрические элементы
- Глава 11. Задающие, сравнивающие и усилительные устройства сар
- 11.1. Задающие устройства
- 11.2. Сравнивающие устройства
- 11.3. Усилители
- Глава 12. Исполнительные устройства автоматики
- Глава 13. Микропроцессорные средства и их использование в автоматике
- 13.1. Базовые средства микропроцессорной техники
- 13.2. Системы сбора информации с датчиков на базе микроЭвм
- Глава 14. Программируемые регуляторы
- Список терминов
- - Преобразования
- Список используемой литературы
- Мичуринский государственный аграрный университет
- 393760, Тамбовская обл., г.Мичуринск, ул. Интернациональная, 101,
- Лабораторный Практикум
- «Автоматика»
- 110302 « Электрификация и автоматизация сельского хозяйства»,
- 110303 – «Механизация переработки сельскохозяйственной продукции»,
- 110304 – «Технология обслуживания и ремонта машин в апк»
- Рецензент:
- Содержание
- Общие сведения
- Выпрямительный диод
- Стабилитрон
- Полупроводниковые выпрямители
- 3. Описание лабораторного стенда
- 4. Рабочее задание
- 5. Контрольные вопросы
- Рабочая точка транзисторного каскада
- Работа транзисторного каскада в режиме малого сигнала
- 3. Описание лабораторного стенда
- 4. Рабочее задание
- 5. Контрольные вопросы
- Схемы с оу, охваченные обратной связью
- Инвертирующий усилитель
- Неинвертирующий усилитель
- Дифференциальный усилитель
- Суммирующая схема
- Интегрирующая схема
- Дифференцирующая схема
- 3. Описание лабораторного стенда
- 4. Рабочее задание
- 5. Контрольные вопросы
- Однопороговый компаратор
- Гистерезисный компаратор
- 3. Описание лабораторного стенда
- 4. Рабочее задание
- 5. Контрольные вопросы
- Лабораторная работа №5 Исследование цифровых систем
- 1. Цель работы
- Сведения необходимые для выполнения работы
- Логические элементы
- Дешифраторы
- Мультиплексоры
- Триггеры
- Счетчики
- 3. Рабочее задание
- 4. Контрольные вопросы
- Литература
- Методические указания по выполнению лабораторных работ
- Цель работы
- Общие сведения
- Описание лабораторного стенда
- Указания по выполнению работы
- Содержание отчета
- Цель работы
- Оборудование и приборы лабораторного стенда
- Общие сведения
- Указания по выполнении работы
- Содержание отчета
- Рекомендуемая литература
- Контрольные вопросы
- Цель работы
- Общие понятия
- Оборудование и приборы лабораторного стенда
- Указания по выполнению работы
- Содержание отчета
- Рекомендуемая литература
- Контрольные вопросы
- Цель работы
- Общие сведения
- Оборудование и приборы лабораторного стенда
- Указания по выполнению работы
- Рекомендуемая литература
- Контрольные вопросы
- Цель работы
- Общие сведения
- Описание лабораторного стенда
- Указания и порядок выполнения работы
- Содержание отчета
- Рекомендуемая литература
- Контрольные вопросы
- Практикум по основам автоматики
- 110302 « Электрификация и автоматизация сельского хозяйства»,
- 110303 – «Механизация переработки сельскохозяйственной продукции»,
- 110304 – «Технология обслуживания и ремонта машин в апк»
- Рецензент:
- Содержание
- Выбор варианта задания
- 1. Преобразователи и усилители электрических сигналов
- 2. Исполнительные устройства и электропривод
- Автоматика
- Рецензент:
- 1. Цели и задачи курса
- 2. Объем и содержание курса
- 3. Вопросы контрольного задания
- Номера вопросов контрольного задания.
- 4. Выполнение контрольного задания
- 5. Литература