5. Контрольные вопросы
Какой электронный прибор называется полупроводниковым диодом?
Сравните токи через выпрямительный полупроводниковый диод при прямом и обратном смещении по порядку величин. Объясните различие.
Что такое ток насыщения диода?
Для каких целей применяются стабилитроны?
Какая ветвь ВАХ стабилитрона является рабочей?
Как определить коэффициент стабилизации?
Можно ли использовать стабилитрон в схемах выпрямителей переменного тока?
Можно ли включать стабилитроны последовательно? параллельно? Какие дополнительные качества можно при этом получить?
Какие существуют способы термокомпенсации параметров стабилитрона?
Чем отличается выходное напряжение в схемах однополупериодного и двухполупериодного выпрямителей?
Сравните максимальное обратное напряжение на диодах в однополупериодном и двухполупериодном выпрямителях.
Одинаковы ли частоты входного и выходного напряжений двухполупериодного выпрямителя?
Какая схема выпрямителя характеризуется наименьшей амплитудой пульсаций на выходе?
Насколько точно определены в работе параметры полупроводниковых приборов? От чего может зависеть качество полученных результатов?
Лабораторная работа №2
Исследование характеристик биполярного транзистора
1. Цель работы
Целью работы является:
определение коэффициента передачи транзистора по постоянному току;
получение входной характеристики транзистора в схеме с общим эмиттером;
получение семейства выходных характеристик транзистора в схеме с общим эмиттером;
установка рабочей точки транзисторного каскада с общим эмиттером.
Сведения, необходимые для выполнения работы
Перед началом работы полезно ознакомиться со следующими вопросами:
устройство и принцип работы биполярного транзистора;
основные характеристики биполярного транзистора;
схемы включения биполярного транзистора и режимы его работы;
• особенности работы транзистора в режиме малого сигнала.
Полупроводниковый прибор, имеющий три электрода и два взаимодействующих p-n-перехода, называется биполярным транзистором. В зависимости от последовательности чередования областей с различным типом проводимости различают p-n-p-транзисторы и n-p-n-транзисторы. Их условные обозначения и устройство приведены на рисунке 2.1.
Биполярные транзисторы, как правило, изготавливаются из кремния, германия или арсенида галлия. По технологии изготовления биполярные транзисторы делятся на сплавные, диффузионные и эпитаксиальные.
Рисунок 2.1 - Условные обозначения и устройство транзисторов p-n-p (а, б) и n-p-n (в, г) типов (показано смещение переходов транзисторов при работе в линейном режиме)
В основном биполярные транзисторы применяются для построения схем усилителей, генераторов и преобразователей электрических сигналов в широком диапазоне частот (от постоянного тока до десяти гигагерц) и мощности (от десятков милливатт до сотен ватт). В соответствии с этим биполярные транзисторы делятся на группы по частоте (низкочастотные - не более 3 МГц; средней частоты - от 3 МГц до 30 МГц; высокочастотные - от 30 МГц до 300 МГц; сверхвысокочастные - более 300 МГц) и по мощности (маломощные - не более 0,3 Вт; средней мощности - от 0,3 Вт до 1,5 Вт; большой мощности - более 1,5 Вт).
Разновидностью биполярных транзисторов являются лавинные транзисторы, предназначенные для формирования мощных импульсов наносекундного диапазона.
Другую разновидность биполярных транзисторов представляют двухэмиттерные модуляторные транзисторы, в которых конструктивно объединены две транзисторные структуры.
Широкое распространение в последние годы получили составные биполярные транзисторы (транзисторы Дарлингтона), обладающие очень высоким коэффициентом передачи тока.
В зависимости от полярности напряжений, приложенных к электродам транзистора, различают следующие режимы его работы: линейный (усилительный), насыщения, отсечки и инверсный.
В линейном режиме работы биполярного транзистора эмиттерный переход смещен в прямом направлении, а коллекторный - в обратном. В режиме насыщения оба перехода смещены в прямом направлении, а в режиме отсечки - оба р-n-переход смещен в прямом направлении, а эмиттерный — в обратном. Кроме рассмотренных режимов, возможен еще один режим, который является не рабочим, а аварийным, - это режим пробоя.
Принцип работы биполярного транзистора основан на возможности управления токами электродов путем изменения напряжений, приложенных к электронно-дырочным переходам. В линейном режиме, когда переход база-эмиттер открыт благодаря приложенному к нему напряжению UB3> через него протекает ток базы IБ. Протекание тока базы приводит к инжекции зарядов из области коллектора в область базы, причем ток коллектора определяется выражением:
Ik=DC·IБ’ (2.1)
где DC - статический коэффициент передачи тока базы.
Прямое падение напряжения UБЭ на эмиттерном переходе связано с током коллектора уравнением Эберса-Молла:
(2.2)
где - обратный ток коллекторного перехода, а Т - температурный потенциал, который при температуре Т = 300 К составляет для кремния примерно 25 мВ.
Из выражения (2.2) следует, что при прямом смещении эмиттерного перехода и при условии UБЭ > т ток коллектора возрастает с ростом напряжения UБЭ по экспоненциальному закону:
(2.3)
где UБЭ < K - контактная разность потенциалов.
Важнейшими характеристиками транзистора являются его входная и выходные вольтамперные характеристики. Типичные ВАХ биполярного транзистора приведены на рисунке 2.2.
Рисунок 2.2 - Входная (а) и выходные (б) ВАХ биполярного транзистора
Кроме ВАХ, рассматривают статический коэффициент передачи тока, коэффициент передачи тока, дифференциальное входное сопротивление. Значения этих характеристик зависят от схемы включения транзистора. На рисунке 2.3 приведена схема включения биполярного транзистора с обратной проводимостью (n-p-n типа) по схеме с общим эмиттером. Для такой схемы справедливо следующее соотношение между токами:
IЭ= IБ+ Ik (2.4)
где IЭ, IБ, Ik - сила тока в цепях эмиттера, базы и коллектора соответственно. Рассмотрим основные характеристики биполярного транзистора.
Рисунок 2.3 - Включение биполярного транзистора по схеме с общим эмиттером
Статический коэффициент передачи тока DC определяется как отношение тока коллектора Ik к току базы Ik
(2.5)
Коэффициент передачи тока АC определяется приращением Ik коллекторного тока к вызывающему его приращению IБ базового тока:
(2.6)
Дифференциальное входное сопротивление ri транзистора в схеме с общим эмиттером определяется при фиксированном значении напряжения коллектор-эмиттер. Оно может быть найдено как отношение приращения напряжения база-эмиттер к вызванному им приращению тока базы:
(2.7)
Используя полученные ранее параметры транзистора, дифференциальное входное сопротивление rвх можно определить по формуле:
(2.8)
где rБ - распределенное сопротивление базовой области полупроводника, rэ -дифференциальное сопротивление перехода база-эмиттер, определяемое из выражения: rэ = 25/Iэ, а IЭ - постоянный ток эмиттера в миллиамперах.
Первое слагаемое в выражении (8) много меньше второго, поэтому им можно пренебречь. Тогда:
(2.9)
Биполярные транзисторы чаще всего используются в усилительных каскадах. На рисунке 2.4 изображен типичный транзисторный каскад с общим эмиттером. Режим работы биполярного транзистора в таком каскаде определяется силой базового тока. Для того чтобы базовый ток был стабилен, база соединяется с источником напряжения ЕБ через высокоомное сопротивление RБ.
Рисунок 2.4 – Установка рабочей точки с помощью стабильного базового тока
Для определения режима работы транзисторного каскада удобно построить линию нагрузки на выходной характеристике транзистора. Данный способ позволяет описать поведение транзистора во всех основных режимах работы, а именно: насыщения, усиления и отсечки.
Режим насыщения имеет место в случае, когда ток коллектора не управляется током базы. Эта ситуация возникает при условии где IКН — ток насыщения коллектора. Значение этого тока определяется сопротивлением RK в цепи коллектора и напряжением источника питания Ек:
(2.10)
Режим насыщения характеризуется низким падением напряжения коллектор-эмиттер (порядка 0,1 В). Для перевода транзистора в этот режим необходимо, чтобы через базу транзистора протекал ток, больший, чем ток насыщения базы IБН:
(2.11)
Для того чтобы базовый ток стал равным току насыщения, сопротивление резистора RБ следует выбрать равным:
(2.12)
В режиме усиления ток коллектора меньше тока насыщения 1ет, и для его вычисления можно воспользоваться уравнением линии нагрузки цепи коллектора:
(2.13)
- Введение
- Часть 1. Основы теории автоматического управления
- Глава 1. Принципы построения автоматизированных производств
- 1.1. Автоматизация производства
- 1.2. Основные термины и определения автоматизированных производств
- 1.3. Конструкторская документация - схемы систем автоматики
- Глава 2. Принципы построения сау и режимы ее работы
- 2.1. Фундаментальные принципы управления
- 2.2. Основные виды сау
- Глава 3. Режимы работы сау
- 3.1. Статические режимы работы сау
- 3.1.1. Статические характеристики
- 3.1.2. Статическое и астатическое регулирование
- 3.2. Динамический режим сау
- 3.2.1. Уравнение динамики сау
- 3.2.2. Передаточная функция
- 3.2.3. Элементарные динамические звенья
- 3.3. Структурные схемы в сау
- Глава 4. Временные характеристики сау
- 4.1. Понятие временных характеристик
- 4.2. Переходные характеристики элементарных звеньев
- 4.2.1. Безынерционное (пропорциональное, усилительное) звено
- 4.2.2. Интегрирующее (астатическое) звено
- 4.2.3. Инерционное звено первого порядка (апериодическое)
- 4.2.4. Инерционные звенья второго порядка
- 4.2.5. Дифференцирующее звено
- 4.2.6. Запаздывающее (чистого или транспортного запаздывания) звено
- Глава 5. Частотные характеристики сау
- 5.1. Понятие частотных характеристик
- 5.2. Частотные характеристики типовых звеньев
- 5.2.1. Безынерционное звено
- 5.2.2. Интегрирующее звено
- 5.2.3. Апериодическое звено
- 5.2.4. Правила построения чх элементарных звеньев
- 5.3. Частотные характеристики разомкнутых одноконтурных сау
- Глава 6. Законы регулирования и качество сар
- 6.1. Характеристики объекта управления
- 6.2. Законы регулирования
- 6.3. Понятие устойчивости системы
- 6.4. Основные условия устойчивости
- 6.5 Частотные критерии устойчивости сау
- 6.6 Качество регулирования сау
- 6.7 Синтез и коррекция сар
- Часть 2. Технические средства автоматики
- Глава 7. Элементная база устройств автоматики
- 7.1. Элементная база автоматики
- 7.2. Аналоговые схемы устройств автоматики
- Глава 8. Цифровые схемы автоматики
- 8.1. Комбинационная логика
- 8.2. Элементы комбинационных логических устройств
- 8.3. Цифровые автоматы
- Глава 9. Датчики параметров технологического процесса
- 9.1. Характеристики датчиков
- 9.2. Чувствительные элементы датчиков
- 9.2.1. Механические чувствительные элементы датчиков
- 9.2.2. Потенциометрические чувствительные элементы
- 9.2.3. Тензочувствительные элементы
- 9.2.4. Индуктивные чувствительные элементы
- 9.2.5. Индукционные чувствительные элементы
- 9.2.6. Емкостные чувствительные элементы
- 9.2.7. Пьезоэлектрические чувствительные элементы
- 9.2.7. Фотоэлектрические чувствительные элементы
- 9.2.8. Элементы, чувствительные к температуре
- Глава 10. Принципиальные схемы датчиков
- 10.1. Датчики температуры
- 10.2. Датчики перемещений
- 10.3. Термоанемометр постоянной температуры
- 10.4. Датчик давления с ёмкостным преобразователем
- 10.5. Датчик влажности газов
- 10.6. Датчики, использующие фотоэлектрические элементы
- Глава 11. Задающие, сравнивающие и усилительные устройства сар
- 11.1. Задающие устройства
- 11.2. Сравнивающие устройства
- 11.3. Усилители
- Глава 12. Исполнительные устройства автоматики
- Глава 13. Микропроцессорные средства и их использование в автоматике
- 13.1. Базовые средства микропроцессорной техники
- 13.2. Системы сбора информации с датчиков на базе микроЭвм
- Глава 14. Программируемые регуляторы
- Список терминов
- - Преобразования
- Список используемой литературы
- Мичуринский государственный аграрный университет
- 393760, Тамбовская обл., г.Мичуринск, ул. Интернациональная, 101,
- Лабораторный Практикум
- «Автоматика»
- 110302 « Электрификация и автоматизация сельского хозяйства»,
- 110303 – «Механизация переработки сельскохозяйственной продукции»,
- 110304 – «Технология обслуживания и ремонта машин в апк»
- Рецензент:
- Содержание
- Общие сведения
- Выпрямительный диод
- Стабилитрон
- Полупроводниковые выпрямители
- 3. Описание лабораторного стенда
- 4. Рабочее задание
- 5. Контрольные вопросы
- Рабочая точка транзисторного каскада
- Работа транзисторного каскада в режиме малого сигнала
- 3. Описание лабораторного стенда
- 4. Рабочее задание
- 5. Контрольные вопросы
- Схемы с оу, охваченные обратной связью
- Инвертирующий усилитель
- Неинвертирующий усилитель
- Дифференциальный усилитель
- Суммирующая схема
- Интегрирующая схема
- Дифференцирующая схема
- 3. Описание лабораторного стенда
- 4. Рабочее задание
- 5. Контрольные вопросы
- Однопороговый компаратор
- Гистерезисный компаратор
- 3. Описание лабораторного стенда
- 4. Рабочее задание
- 5. Контрольные вопросы
- Лабораторная работа №5 Исследование цифровых систем
- 1. Цель работы
- Сведения необходимые для выполнения работы
- Логические элементы
- Дешифраторы
- Мультиплексоры
- Триггеры
- Счетчики
- 3. Рабочее задание
- 4. Контрольные вопросы
- Литература
- Методические указания по выполнению лабораторных работ
- Цель работы
- Общие сведения
- Описание лабораторного стенда
- Указания по выполнению работы
- Содержание отчета
- Цель работы
- Оборудование и приборы лабораторного стенда
- Общие сведения
- Указания по выполнении работы
- Содержание отчета
- Рекомендуемая литература
- Контрольные вопросы
- Цель работы
- Общие понятия
- Оборудование и приборы лабораторного стенда
- Указания по выполнению работы
- Содержание отчета
- Рекомендуемая литература
- Контрольные вопросы
- Цель работы
- Общие сведения
- Оборудование и приборы лабораторного стенда
- Указания по выполнению работы
- Рекомендуемая литература
- Контрольные вопросы
- Цель работы
- Общие сведения
- Описание лабораторного стенда
- Указания и порядок выполнения работы
- Содержание отчета
- Рекомендуемая литература
- Контрольные вопросы
- Практикум по основам автоматики
- 110302 « Электрификация и автоматизация сельского хозяйства»,
- 110303 – «Механизация переработки сельскохозяйственной продукции»,
- 110304 – «Технология обслуживания и ремонта машин в апк»
- Рецензент:
- Содержание
- Выбор варианта задания
- 1. Преобразователи и усилители электрических сигналов
- 2. Исполнительные устройства и электропривод
- Автоматика
- Рецензент:
- 1. Цели и задачи курса
- 2. Объем и содержание курса
- 3. Вопросы контрольного задания
- Номера вопросов контрольного задания.
- 4. Выполнение контрольного задания
- 5. Литература