logo search
все вместе

Операторный

Он основан на интегральном преобразовании Лапласа. В изображ. решен. диф. ур-я имеет вид: Y(p)=W(p)*U(p), и выполнив преобразование Лапласа получим оригинал т.е решение ур-я при нулевых начал. условиях.y(t)=L-1{W(p)*U(p)}, различ. след. способы нахождения оригинала: 1) табличный, 2) по теореме разложения, 3) по теореме свертывания. Для определ. интеграла можно использовать теорему разложения. Например для случая разных веществ. корней хар-го ур-я: p1, p2, p3,…, pn, можем записать Y(p)= bmpm+…+b1p+ b0/ anpn+…+a1p+a0=K(p)/ an(p-p1)(p-p2)… (p-pn) тогда решене исход. Ур-я динамики можно будет записать: y(t)= Σni=1 (K(pi)/D’(pi))*epit, D’(pi)=dD(p)/dp при p= pi, где pi- корни хар-го ур-я D(P)=0. Аналогичные ф-лы есть для случая кратных и комплексных корней. Теорема свертывания гласит если изобр. решения диф. ур-я представл. собой производные двух ф-ий для которых известны оригиналы L-1 {W(p)}=ω(t), L-1 {U(p)}=u(t), то ориг. Решения y(t) может быть вычислен с помощью интеграла свертки или интеграла Дюамеля. y(t)=∫t0W(τ)* U(t-τ)dτ. Интеграл Дюамеля связывает мгновенные значения вых и вх сигналов с учётом влияния предысторий. Функция w() отражает с которым предыдущее значение n(t-) участвует в формировании выходного сигнала.

Достоинства:

1) операторные методы используют алгебраические выражения

2) постоянные интегрирования вычисляются автоматически из нулевых начальных условий

3) метод ориентирован на табличное решение

Недостатки:

1)необходимость нахождения корней