2. Дискретные ортогональные преобразования
1.Сигнал имеет частотный спектр, ограниченный частотой F max = 10 КГц, причем разрешение по частоте составляет 100 Гц. В течении какого промежутка времени должен наблюдаться сигнал? Через какие промежутки времени должны сниматься отсчеты сигнала?
2. Сигнал наблюдается в течении 10 сек., причем отсчеты сигнала снимаются через 10 мксек. Какова предельная частота сигнала Fmax может быть зафиксирована. Какое разрешение по частоте будет обеспечиваться в этом случае?
3. Заданы последовательности G = [0; 1; 2] и X = [0; 1; 2]. Вычислить апериодическую свертку и корреляцию.
Выполнить оценку вычислительной сложности разрядно-срезового алгоритма сверки/корреляции в сравнении с вычислительной сложностью прямого алгоритма свертки/корреляции.
4. Задан вектор X =[0,0,1,1,2,3,2,1,0,1,0,0]. Определить вектор Y с осчетами отфильтрованного сигнала при использовании рекурсивного линейного фильтра с коэффициентами H = [1,3,1] и B = [-1/2, 1] ("краевыми эффектами пренебречь).
5. Реализация линейных пространственных фильтров требует перемещения центра маски по изображению и вычисления, для каждого из положений маски, суммы произведений коэффициентов маски на значения соответствующих пикселей. В случае низкочастотной фильтрации все коэффициенты равны 1, и можно использовать однородный усредняющий фильтр или алгоритм скользящего среднего, основанный на том, что при переходе от точки к точке обновляется только часть вычисляемых элементов.
(а) Сформулируйте такой алгоритм для фильтра размерами пп, демонстрирующий характер взаимосвязи вычислений с последовательностью сканирования, использующейся при передвижении маски по изображению.
(б) Отношение числа операций, требуемых для реализации метода «в лоб» к числу операций, используемых алгоритмом скользящего среднего называется эффективностью алгоритма. Подсчитайте эффективность алгоритма для данного случая и изобразите ее в виде графика зависимости от п для п > 1. Коэффициент 1/п2 является общим для обоих случаев, и поэтому не должен приниматься во внимание. Считайте, что изображение окружено бордюром из нулей достаточной ширины, чтобы не учитывать влияние граничных эффектов при вычислениях.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники