1.7. Апериодическая свертка и корреляция
Апериодическая свертка и корреляция в отличие от циклической относятся к классу локальных преобразований. При этом как правило полагается, что размер вектора исходных данных значительно больше размера ядра свертки, что приводит к следующему выражению для вычисления любого отсчета результата:
(1.16)
Вычисление свертки и корреляции лежит в основе корреляционного метода подавления помех.
Сущность такого метода заключается в использовании различия между корреляционными функциями сигнала и помехи. Данный метод эффективен лишь в случае обработки периодических или квазипериодических сигналов.
Рассмотрим сущность метода на примере, когда полезный сигнал является гармоническим, а помеха - типа белого гауссова шума [21].
Автокорреляционная функция сигнала является тоже гармонической и имеет ту же частоту. Метод автокорреляционного приема основан на анализе автокорреляционной функции принятого сигнала y(t)=x(t)+р(t).
Если сигнал и помеха взаимно независимы (типичный для практики случай), то
т.е автокорреляционная функция принятого сигнала равна сумме автокорреляционных функций сигнала и помехи.
Метод корреляционного приема позволяет обнаружить полезный сигнал, который имеет мощность значительно меньшую, чем мощность помехи.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники