Основные требования к системам цос
Параметр | Значение параметра
| Область применения |
Динамический диапазон обрабатываемых данных (бит) | Фиксированная точка: 8-16 | Сжатие изображений, Радиолокация, Связь |
| Плавающая точка: 16-32 | Гидроакустика, Обработка речи, Обработка изображений |
Емкость памяти буферных устройств (слов) | 64-128 не менее 1К более 4К до 16К | Сжатие изображений, Радиолокация, Гидроакустика, Обработка изображений |
Производительность (оп/сек) | 108 109
109-1010 1010-1011 | Системы связи Обработка акустических сигналов Обработка изображений Радиолокация и гидроакустика |
Первый тип систем ЦОС предусматривает построение конструктивно законченного блока. Как правило, такой блок имеет модульную структуру и строится на базе специализированных СБИС (например, на основе БМК), что позволяет обеспечить аппаратную реализацию подлежащего исполнению алгоритма и оптимизировать структуру аппаратных средств под особенности алгоритма. К этому направлению можно отнести системы Series-151 и MaxVideo. В ряде случаев такие процессоры могут программироваться в целях выполнения тех или иных функций, как, например, WARP-процессор [1].
Отличительной чертой такой архитектуры является наличие отдельных магистралей ввода/вывода данных и возможность автономного функционирования. Блок со спецпроцессором при этом может быть выполнен в стандартном конструктиве типа VME, CAMAC, Multibys [7,8].
Такая система ЦОС допускает не только ввод, но и обработку изображений в реальном масштабе времени, поэтому подобный подход весьма эффективен при построении систем обработки видеоданных.
Второй тип систем ЦОС представляет собой ПЭВМ со специализированным сопроцессором в виде платы, подключаемой к магистрали ПЭВМ и конструктивно встраиваемый в ее корпус. Примером такой архитектуры могут служить наборы модулей фирмы Data Translation на базе сигнальных процессоров типа TMS и платы-акселераторы типа B008 фирмы INMOS на базе транспьютеров T800 [27] Указанные технические средства ориентированы на использование в качестве периферийных спецпроцессоров для построения систем на базе IBM PC/AT. Спецпроцессор, входящий в эту систему, имеет, как правило, конвейерную структуру и может выполнять процедуры обработки изображений, требующие больших вычислительных затрат, в реальном масштабе времени. Настройка на выполнение тех или иных конкретных алгоритмов обработки видеоинформации производится программированием спецпроцессора, что увеличивает функциональную гибкость подобных систем и расширяет области их возможного применения.
На практике первый тип систем ЦОС наиболее часто используется в составе средств предварительной обработки сигналов, причем соответствующие вычислительные средства строятся по принципу операционного автомата с жесткой логикой. Такой подход связан с автономностью функционирования средств предварительной обработки от управляющей ЭВМ при неизменном алгоритме обработки и высокой интенсивности входного потока данных.
Второй тип систем используется, как правило, для систем, сочетающих средства предварительной (спецпроцессоры) и вторичной (ПЭВМ) обработки, когда требуется достаточно интенсивный обмен с оператором.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники