Кафедра вычислительной техники
О кафедре
Кафедра ВТ СПбГУ ИТМО создана в 1937 году и является одной из старейших и авторитетнейших научно-педагогических школ России.
Первоначально кафедра называлась кафедрой математических и счетно-решающих приборов и устройств и занималась разработкой электромеханических вычислительных устройств и приборов управления. Свое нынешнее название кафедра получила в 1963 году.
Кафедра вычислительной техники является одной из крупнейших в университете, на которой работают высококвалифицированные специалисты, в том числе 8 профессоров и 15 доцентов, обучающие около 500 студентов и 30 аспирантов.
Кафедра имеет 4 компьютерных класса, объединяющих более 70 компьютеров в локальную вычислительную сеть кафедры и обеспечивающих доступ студентов ко всем информационным ресурсам кафедры и выход в Интернет. Кроме того, на кафедре имеются учебные и научно-исследовательские лаборатории по вычислительной технике, в которых работают студенты кафедры.
Чему мы учим
Традиционно на кафедре ВТ основной упор в подготовке специалистов делается на фундаментальную базовую подготовку в рамках общепрофессиональных и специальных дисциплин, охватывающих наиболее важные разделы вычислительной техники: функциональная схемотехника и микропроцессорная техника, алгоритмизация и программирование, информационные системы и базы данных, мультимедиатехнологии, вычислительные сети и средства телекоммуникации, защита информации и информационная безопасность. В то же время, кафедра предоставляет студентам старших курсов возможность специализироваться в более узких профессиональных областях в соответствии с их интересами.
Специализации на выбор
Кафедра ВТ ИТМО предлагает в рамках инженерной и магистерской подготовки студентам на выбор по 3 специализации.
1. Специализация в области информационно-управляющих систем направлена на подготовку специалистов, умеющих проектировать и разрабатывать управляющие системы реального времени на основе средств микропроцессорной техники. При этом студентам, обучающимся по этой специализации, предоставляется уникальная возможность участвовать в конкретных разработках реального оборудования, изучая все этапы проектирования и производства, вплоть до получения конечного продукта. Дня этого на кафедре организована специальная учебно-производственная лаборатория, оснащенная самым современным оборудованием. Следует отметить, что в последнее время, в связи с подъемом отечественной промышленности, специалисты в области разработки и проектирования информационно-управляющих систем становятся все более востребованными, причем не только в России, но и за рубежом.
2. Кафедра вычислительной техники - одна из первых, начавшая в свое время подготовку специалистов в области открытых информационно-вычислительных систем. Сегодня студентам, специализирующимся а этой области, предоставляется уникальная возможность изучать и осваивать одно из самых мощных средств создания больших информационных систем - систему управления базами данных Oracle. При этом повышенные требования, предъявляемые к вычислительным ресурсам, с помощью которых реализуются базы данных в среде Oracle, удовлетворяются за счет организации на кафедре специализированного компьютерного класса, оснащенного мощными компьютерами фирмы SUN, связанными в локальную сеть кафедры. В то же время, студенты, специализирующиеся в данной области, получают хорошую базовую подготовку в области информационных систем, что позволяет им по завершению обучения успешно разрабатывать базы данных и знаний не только в среде Oracle, но и на основе любых других систем управления базами данных.
3. И, конечно же, кафедра не могла остаться в стороне от бурного натиска вычислительных сетей и средств телекоммуникаций в сфере компьютерных технологий. Наличие высокопрофессиональных кадров в данной области и соответствующей технической базы на кафедре (две локальные вычислительные сети, объединяющие около 80 компьютеров и предоставляющие возможность работы в разных операционных средах - Windows, Unix, Solaris), позволило организовать подготовку специалистов по данному направлению, включая изучение вопросов компьютерной безопасности, администрирования, оптимизации и проектирования вычислительных сетей.
Редакционно-издательский отдел
Санкт-Петербургского государственного университета информационных технологий, механики и оптики
197101, Санкт-Петербург, Кронверкский пр., 49
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники