3.9. Быстрое преобразование Адамара
Как отмечалось в главе 2, матрица ядра Адамара
Поэтому алгоритм быстрого преобразования Адамара может быть легко получен на основе алгоритма БПФ2, если из него удалить операцию умножения на матрицу D поворачивающих элементов. На основании этого из выражения (3.10) можно получить:
(3.26)
где, как и в (3.10) l = 2m-1, k = (n)mod l, n - текущий индекс вектора ().
Иначе говоря, “бабочка” в таком алгоритме имеет вид как это показано на рис.3.9
Рис.3.9. Бабочка алгоритма быстрого преобразования Адамара, где
Такая же точно “бабочка”, как и представленная на рис.3.7, служит основой алгоритмов быстрого преобразования Пэли и Уолша, отличие которых состоит лишь в упорядочении исходных данных перед первой итерацией (см. главу 2).
Граф быстрого алгоритма Уолша – Пэли для N = 16 приведен на рис.3.10.
Сложность же алгоритма быстрых ортогональных преобразований Уолша - Адамара в числе Б0 алгоритма QБПФ и QБПХ для , однако сложность самой базовой операции значительно меньше и составит только 2 операции сложения, что значительно меньше чем для алгоритма БПХ (не говоря уже о БПФ). Поэтому можно записать, что:
.
Рис.3.10. Граф алгоритма быстрого преобразования Адамара-Уолша для N=16
Быстрые алгоритмы БДОП Адамара-Уолша являются «обратимыми», т.е. вычисления по графу (см., например, рис.3.10) могут выполняться как «слева направо», так и «справа налево» [6].
Заметим, что для алгоритма БДОП с прореживанием по частоте не выполняется двоично-инверсная перестановка элементов вектора X перед первой итерацией, но зато необходимо переставлять элементы векторов результата по закону двоичной инверсии.
На рис. 3.11 представлен граф быстрого преобразования Хаара. Нетрудно видеть, что он является частично вырожденным по отношению к графу БДОП Адамара-Уолша.
Сам алгоритм быстрого преобразования Хаара (за исключением итоговой нормировки) будет описываться выражением (3.26), за тем лишь исключением, что при обработке каждого блока данных выполняется только первая базовая операция (k=0) Для БП Хаара сложность отдельной базовой операции такая же, как и у БПУ. Однако общее число базовых операций меньше, чем в алгоритмах БПХ и БПУ, и составляет всего Q = (2N-1) БО.
Рис.3.11. Граф быстрого преобразования Хаара для N =16.
- Цифровая обработка сигналов методы предварительной обработки
- Санкт-Петербург
- Содержание
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- Основные типы алгоритмов цифровой обработки сигналов
- 1.4. Линейные и нелинейные преобразования
- 1.5. Переход от непрерывных сигналов к дискретным
- 1.6. Циклическая свертка и корреляция
- 1.7. Апериодическая свертка и корреляция
- 1.8. Двумерная апериодическая свертка и корреляция
- 1.9. Контрольные вопросы и задания.
- 2. Дискретные ортогональные преобразования
- 2.1. Введение в теорию ортогональных преобразований
- 2.2. Интегральное преобразование Фурье
- 2.3. Интегральное преобразование Хартли
- 2.4. Дискретное преобразование Фурье
- 2.5. Дискретное преобразование Хартли
- 2.6. Двумерные дискретные преобразования Фурье и Хартли
- 2.7. Ортогональные преобразования в диадных базисах
- 2.8. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 2.9. Контрольные вопросы и задания
- 3. Быстрые алгоритмы ортогональных преобразований
- 3.1. Вычислительная сложность дпф и способы её сокращения
- 3.2. Запись алгоритма бпф в векторно-матричной форме
- 3.3. Представление алгоритма бпф в виде рекурсивных соотношений
- Алгоритмы бпф с прореживанием по времени и по частоте
- 3.6. Вычислительная сложность алгоритмов бпф
- 3.7. Выполнение бпф для случаев
- 3.8. Быстрое преобразование Хартли
- 3.9. Быстрое преобразование Адамара
- 3.10. Контрольные вопросы и задания
- 4. Линейная фильтрация сигналов во временной и частотной областях
- 4.1. Метод накопления
- Не рекурсивные и рекурсивные фильтры
- 4.3. Выбор метода вычисления свертки / корреляции
- 4.4. Выполнение фильтрации в частотной области
- 4.5. Адаптивные фильтры
- 4.6. Оптимальный фильтр Винера
- 4.7. Методы обращения матриц
- 4.8. Контрольные вопросы и задания
- 5. Алгоритмы нелинейной обработки сигналов
- 5.1. Ранговая фильтрация
- 5.2. Взвешенная ранговая фильтрация
- 5.3. Скользящая эквализация гистограмм
- 5.4. Преобразование гистограмм распределения
- 5.5. Контрольные вопросы и задания
- Кафедра вычислительной техники